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Disclaimer

� The author of this text is Philippe J.S. De Brouwer and all rights are
reserved by the author.

� The opinions expressed in this text are the views of the author and do not
necessarily reflect those of his employers or affiliations.

� This text is not intended as investment advice, no transactions should be
based on this text.

� The right to keep, copy and use this document for educational purposes
is granted to AGH University of Krakow.

HSBC Disclaimer
This presentation has been prepared by Philippe De Brouwer. Philippe works for HSBC Ser-

vice Delivery Sp z o.o. (“HSBC”). HSBC accepts no liability whatsoever for any direct, indirect

or consequential loss arising from the use of this document. HSBC is under no obligation to keep

current the information in this document. You are solely responsible for making your own indepen-

dent appraisal of and investigations into the data, products, financial instruments and transactions
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referred to in this document and you should not rely on any information in this document as consti-

tuting investment advice. Neither HSBC nor any of its affiliates are responsible for providing you

with legal, tax or other specialist advice and you should make your own arrangements in respect

of this accordingly. The issuance of and details contained in this document, which is not for public

circulation, does not constitute an offer or solicitation for, or advice that you should enter into,

the purchase or sale of any security, commodity or other financial instrument or master agreement,

or any other contract, agreement or structure whatsoever. This document is intended to be dis-

tributed in its entirety. Reproduction of this document, in whole or in part, or disclosure of any of

its contents, without prior consent of author, is prohibited.

1 Introduction: What is Coherence and Risk?

Notice: Questions Ahead

Question: How are you today?

(A) Excellent

(B) Good

(C) Not so good

Figure 1: Euclid Proposed 5 Axioms (or rather 3 + 2 definitions) in his “Ele-
ments” as foundation of Geometry. — see eg. Heath, 1909

Are other paradigms possible

— 3 — (c) Philippe De Brouwer
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Question: Other paradigms - sets of axioms?

Can it be coherent that more than one line through a point (not on line
D) never intersects with line D

(A) No

(B) Yes, but only a finite number of lines

(C) Yes, it is possible that an infinite amount of lines through that point
that will never cross D

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Alternative Coherent Geometries

Figure 2: Alternative coherent geometries. Where in Ecuclid’s geometry there is
exactly one line parallel to line D and through point M, in Nikoläı Lobatchevski’s
hypersphere there are an infinite number and in Bernhard Riemann’s sphere
there are none.

Thinking about Financial Risk

Definitions of Risk Measures

Definition 1 (Standard Deviation / Variance).

V AR := variance = E[(X − E[X])2]

σ := standard deviation =
√
V AR

(c) Philippe De Brouwer — 4 —
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Idea Reference
no risk, no rewards Ecclesiastes 11:1–6 (ca. 300 BCE)
diversify investment Ecclesiastes 11:1–2 (ca. 300 BCE)

and Bernoulli, 1738

Table 1: Key ideas about investment risk

Risk Measure Reference
variance (VAR) Fisher, 1906, Marschak, 1938

and Markowitz, 1952
Value at Risk (VaR) Roy, 1952
semi-variance (S) Markowitz, 1991

Expected Shortfall (ES) Acerbi and Tasche, 2002 and
De Brouwer, 2012

Table 2: Normative theories and their risk measures implied.

Definition 2 (Value-at-Risk).

V aRα(P) := −(the best of the 100α% worst outcomes of P)

Definition 3 (Expected Shortfall).

ES(α)(P) := −(average of the worst 100α% realizations)

Definition 4 (Worst Expected Loss).

WEL := Worst Expected Loss = −E[min(P)]

What Risk Measure is your Favourite?

Question: Best risk measure for banking

According to you, what risk measures should banks use?

(A) standard deviation / variance (σ / VAR)

(B) value at risk (VaR)

(C) expected shortfall (ES)

(D) worst expected loss (WEL)

— 5 — (c) Philippe De Brouwer
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Visualization of some risk measures

Figure 3: visualization of ES, VaR and σ. Note that WEL is not defined.

2 An Axiomatic Approach to Financial Risk

2.1 Axioms

A set of Axioms

Proposed by Artzner et al., 1997

Definition 5 (Coherent Risk Measure). A function ρ : V 7→ R is called a
coherent risk measure if and only if

A. monotonous: ∀X,Y ∈ V : X ≤ Y ⇒ ρ(X) ≥ ρ(Y )

B. sub-additive: ∀X,Y,X + Y ∈ V : ρ(X + Y ) ≤ ρ(X) + ρ(Y )

C. positively homogeneous: ∀a > 0 and∀X, aX ∈ V : ρ(aX) = aρ(X)

D. translation invariant: ∀a > 0 and ∀X ∈ V : ρ(X + a) = ρ(X)− a

Law-invariance under P: ∀X,Y ∈ V and ∀t ∈ R : P [X ≤ t] = P [Y ≤
t] ⇒ ρ(X) = ρ(Y )

(c) Philippe De Brouwer — 6 —
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Which Risk Measure is Coherent?

� VAR (or volatility) is not coherent because it is not monotonous (triv-

ial)

� VaR is not coherent, because it is not sub-additive Artzner et al., 1999

� ES is coherent Pflug, 2000

� WEL is not usable because it is not Law-Invariant

. . . but who should care?

2.2 Spectral Risk Measures

Spectral Risk Measures

Definition 6 (Spectral Risk Measure). Let X be a stochastic variable, repre-
senting the return of a financial asset. Then we define the spectral measure
of risk Mϕ(X) with spectrum (or risk aversion function) ϕ(p) : [0, 1] 7→ R
as:

Mϕ(X) := −
∫ 1

0

ϕ(p)F←X (p) dp

Coherence for Spectral Risk Measures

Theorem 7. The risk measure Mϕ(X) as defined above is coherent, if and only
if 

ϕ(p) is positive

ϕ(p) is not increasing∫ 1

0
ϕ(p) dp = 1

Proof. See Acerbi, 2002

This theorem proves that there is a deep relation between what we have
defined as “coherent” and a non-increasing risk spectrum. A not-increasing risk
spectrum means that in calculating the risk measure, one cannot assign a lower
weight to a worse outcome. In other words the spectrum ϕ(p) of the risk measure
Mϕ determines the weights associated to possible outcomes. This explains the
alternative name for ϕ(p): “risk aversion function”.

A person who thinks coherently cannot allocate a higher weight to better
outcomes in a risk measure, and hence the risk aversions function is not increas-
ing. And this is what VaR does: it assigns a zero weight to all outcomes worse
than a certain quantile: in Equation 2 one can see that the spectrum of VaR
increases infinitely steep just before α.

— 7 — (c) Philippe De Brouwer
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The Spectrum of ES

Example 8. The spectrum or risk aversion function for the α-Expected Shortfall
(ESα) is

ϕESα(p) =
1

α
1[p≤α] :=

{
1
α if p ≤ α

0 else
(1)

The Spectrum of VaR

Example 9. The spectrum or risk aversion function for the α-VaR is the Dirac
delta function:

ϕV aRα
(p) = δ(p− α) (2)

The spectral representation of risk measures clarifies a lot.1 Via this pre-
sentation it is possible to determine necessary and sufficient conditions on the
spectrum for a risk measure to be coherent.

3 Case Studies

3.1 Default Risk of Bonds

Case 0
One Bond

Question: One Bond

Assume one bond with a 0.7% probability to default in one year in all
other cases it pays 105% in one year. What is the 1%V aR?

(A) -$5 (for a nominal of $100, it is -$5)

(B) $0

(C) 0.7% (for a nominal of $100, it is $0.7)

(D) something else

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1More details can for example be found in De Brouwer (2012), Acerbi, 2004 and most of
the proofs are in Acerbi (2002).

(c) Philippe De Brouwer — 8 —
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Note: continuity in α

Figure 4: ES and VaR in function of α for one bond.

In the case of one bond that has a α% probability to default and in all other
cases pays back the nominal, we note that the VaR does not see any risk as long
the α is below that probability.

Case 1

Question: Two Independent Bonds

Consider two identical bonds with the same parameters, but indepen-
dently distributed. What is the 1%V aR now?

(A) -5%

(B) 0%

(C) 0.49%

(D) 47.5%

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

— 9 — (c) Philippe De Brouwer
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The Cumulative Distribution Function

Figure 5: The cdf of P for one and two independent bonds.

Case 2
The Evil Banker and his customers

Question: The Evil Banker’s First Dilemma

Consider an Evil Banker who has to compose a portfolio for his private
client. If there is at least one default in the portfolio, then the banker
will loose that client.
How can our banker minimize his work and maximize his income?

(A) propose a well diversified portfolio and
explain the importance of diversifica-
tion

(B) propose to invest everything in one
bond

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Case 3

(c) Philippe De Brouwer — 10 —
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Question: The Evil Banker’s Second Dilemma

Consider an Evil Banker who has to comply with Basel III, hence uses
for assessing market risk V aR. Being Evil he does not care about the
size of a bailout. So how does he minimize VaR?

(A) Invest in a well diversified porftolio

(B) Invest everything in one bond

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 More Bonds

Case 5
More Bonds

Example 10 (N Independent Bonds). Consider now an increasing number of
independent bonds with the same parameters as in previous example.Trace the
risk surface.

Risk in Function of Diversification
Convecity (I)

The Risk Surface
Convexity (II)

3.3 Risk Reward for Gaussian Assets

The Three Simple Assets Classes used below The following hypothetical
assets (or asset classes) are used in many basic examples.

A. a volatile asset class, e.g. “a well-diversified portfolio of equities, such as
a world equity fund or funds”.

B. a moderately volatile asset class: this could be understood as “a well-
diversified portfolio of bonds such as bond investment funds”,

C. a safe asset class with low variance: this could be taken to be “a well-
diversified portfolio of cash and near-cash holdings, such as cash invest-
ment funds”,

— 11 — (c) Philippe De Brouwer
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Figure 6: ES and VaR in function of number of bonds.

Figure 7: The result on the risk surface.

The numbers we have chosen to include in the examples are:

µ =

 0.12
0.06
0.02


(c) Philippe De Brouwer — 12 —
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Σ =

 4.0000e-02 -3.1100e-04 -3.8000e-05
3.1000e-04 1.5000e-02 -4.7000e-05
-3.8000e-05 -4.7000e-05 4.2000e-03


This example is already a stylized version of reality, and a Black-Litterman

approach is not really needed. If, for example, we were to choose the following
naive market weights

wmarket =

 0.33333
0.33333
0.33333

 ,

then it would only lead to minor changes in the implied return vector (in the
absence of any specific market view)

µBlackLitterman =

 0.132170
0.050877
0.01717


The precise definition of return (i.e. the log-returns or percent-returns)

may be dependent on the context where these examples are used (or may be
unimportant).

However, in the simulations we will assume for simplicity that the log-returns
of these asset classes are normally distributed, and that the portfolio values are
hence log-normally distributed.

In the case that we explore investment horizons T > 1, then we will make
the additional assumption that the portfolio value is normally distributed.

The Hedge Fund On average, hedge funds typically display quite good in-
formation ratios, but they still have very unlikely probabilities of large losses.
This is a typical example where the normal distribution fails to capture the
essence of the dynamics, and where therefore the mean-variance method (MV)
also fails.

Although MV in itself does not assume a normal distribution,2 by using
variance (or standard deviation) as the sole risk parameter, it fails to capture
essential parts of the dynamics.

In this case, the MV approach will be misled by the small variance of hedge
funds, and will ignore the significant tail risk. Using Expected Shortfall natu-
rally captures at least part of the tail risk.

The hypothetical hedge fund (HF henceforth) used in our simulations is an
overlay of two normally distributed processes.

fHF (R) = a
1√

2πσ1
2
exp

{
− (R− µ1)

2

2σ1
2

}
+ (1− a)

1√
2πσ2

2
exp

{
− (R− µ2)

2

2σ2
2

}
2MV only takes the stance that return is good and volatility is bad. This is not assuming

normality, but the approach fails to capture the richness of the dynamics when distributions
are not normally distributed. Although insufficient to solve such real investment problems,
MV remains a valid framework.

— 13 — (c) Philippe De Brouwer
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Figure 8: The distribution of the hypothetical hedge fund: on the upper row we
have pdf and cdf, and on the lower row the same but with a logarithmic scale,
in order to show better the effect of the small probability on very low returns.
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Figure 9: This graph shows the Expected Shortfall (solid line) for the hedge fund
and for the equities (line and crosses). For very large levels of confidence (small
α, in our case smaller than 4.2%), the hedge funds display a larger Expected
Shortfall.
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where we have chosen the following parameters:



a = 0.975

µ1 = 0.10

σ1 = 0.05

µ2 = −0.50

σ2 = 0.05
This distribution is shown in Figure 8, and results in very favourable infor-

mation ratios compared with the asset classes presented in the previous section,
but obviously also in an important downside risk that is not captured when only
the second moment is considered!

The Relevance of the Hedge Fund. In order to study the impact of the
non-normal distribution and its effect on portfolio optimization, we will consider
the following simplified model. The hedge fund will be mixed with a diversified
portfolio consisting of one third of each of the classical asset classes presented
above.

the α Expected Shortfall
α 0/1 0.2/0.8 0.4/0.6 0.6/0.4 0.8/0.2 1/0

0.00309 0.58261 0.45919 0.34777 0.24858 0.16305 0.18115
0.01000 0.54829 0.42956 0.31741 0.21243 0.12934 0.15066
0.03236 0.39491 0.30578 0.22057 0.14026 0.09281 0.11601
0.10472 0.11359 0.08319 0.06287 0.05297 0.05285 0.07497
0.33889 -0.00416 -0.01221 -0.01312 -0.00642 0.00525 0.02194

µ 0.08500 0.08015 0.07629 0.07244 0.06859 0.06573
σ 0.10618 0.08649 0.07152 0.06464 0.06834 0.08119

Table 3: This table presents an overview of the expected shortfall of the hedge
fund, mixed with a traditional portfolio. The upper section concerns the ex-
pected shortfall, with α in the first column, and different mixes between the
hedge fund and the traditional portfolio (consisting of one third each of cash,
bonds, and equities) in the rest. The numbers in the headings are respectively
the allocation to the hedge fund and the allocation to the traditional portfolio.
For reference, the two last lines give the volatility and the expected return for
the different mixes.

The table shows the importance of working with a coherent downside risk
measure, and the exceptional power of expected shortfall in particular. For
high levels of certainty (small α), we find that the common perception that
hedge funds are risky is indeed a correct one. There is no additional benefit
in diversifying our (already diversified) portfolio further with the inclusion of
hedge funds. The ESα is a monotonously increasing function of the percentage
allocated to the hedge fund for levels of α up to 1%.
For levels of α of 2.5% and above, we notice that it is possible to decrease the
ES by allocating any percentage to the hedge fund. For example, assume that

(c) Philippe De Brouwer — 16 —
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Figure 10: This figure shows the effect on the pdf, considering portfolios with
different allocations to the hedge fund (“HF”), with the composition of the rest
(“mix”) being kept constant at one third each of cash, bonds, and equities.
The leftmost graph has only the hedge fund, and the rightmost graph has no
hedge-fund allocation. The same compositions are used as in Table 3.

— 17 — (c) Philippe De Brouwer
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we are interested in a 5% expected shortfall: then a 30% allocation to the hedge
fund is optimal.3

An analysis that only takes volatility into account (and hence disregards all
specificities expressed by the fact that the distribution is non-normal), would
always allocate a significant part of the portfolio to hedge funds. This is because
the hedge fund has an excellent trade-off between volatility and return. In the
table—or from a plot of the data—we see that the four portfolios with the
highest allocation to the hedge fund dominate the other portfolios in a mean-
variance sense! In a mean-variance analysis, we find that all investors (for all
targets, but for the one-year investment horizon considered here) should allocate
at least 40% to hedge funds!

This can be taken as another example of the importance of working with
coherent risk measures. Once more we find that the results obtained by using
expected shortfall are coherent with our intuitions of financial risk.

A corollary of this might be that any enforcement of a maximal risk level
(now done via VaR limits, or minimal diversification rules for UCITS funds,
for example), could also focus on one simple risk budget expressed in terms of
expected shortfall. That risk measure would automatically filter the important
aspects out from the irrelevant ones, and one rule could thus replace many.

A Structured Investment We assume a simple structure that offers capital
guarantee, and is based on a call option. Its pay-off structure would then be
max {0, Rref}, where Rref is the return of a certain reference index. Typically
this will be an index in which dividends are not re-invested, and hence we will
build the distribution function of this structured fund on a reference return that
is lowered by 3%, in order to make up for this dividend difference. Given our
parameter choice, the equities have a volatility of 20%, and the interest rates are
at 2%—but these are net interest rates, and so the nominal interest rates (before
inflation) might be, for example, 4%. Under such conditions—assuming a Black-
Scholes market and using the Black and Scholes (1973) formulae, the price of
an at-the-money (ATM) call would be roughly 10% of the nominal investment,
while an interest rate of 4% would then only allow purchasing about 2

5 of the
nominal amount of the ATM-call option.4 The result is that our structure will
have 40% leverage on the upside of the index (and capital protection on the
downside). All this means that the pay-off of the structured investment is

Π := Λ [ Rref −DY]
+

With the leverage, Λ, at 40%, and the dividend yield, DY, at 3%.

3It is of course important to remember that this is an academic example, whose results
should not be extrapolated to reality. Further, it may well also be useful to perform more
simulations around the levels of interest with less interpolation. We choose, however, to
present a concise table and focus on the interpretation.

4Of course, there are plenty of other possible pay-off structures. For example, one could
choose to keep the 100% participation in the index return for the first 7%, and short a call with
a strike price of 107%, effectively topping the maximum return at 7%. Another possibility
would be to choose an out-of-the-money call with a strike price of about 88%: this option
would keep the upside potential intact, but would introduce a maximal loss of 12%.

(c) Philippe De Brouwer — 18 —
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Figure 11: This figure shows the effect on the pdf of the portfolio when different
allocations to structured funds (“struc”) are considered, and the composition of
the rest (“mix”) is kept constant at one third each of cash, bonds, and equities.
The upper-left graph shows only the structured fund, and the lower-right graph
has no structured fund allocation. The same compositions are used as in Table
4.
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Expected Shortfall
α 0/1 0.3/0.7 0.4/0.6 0.6/0.4 0.7/0.3 1/0

0.00309 0.00000 0.03160 0.06375 0.09851 0.13750 0.18115
0.01000 0.00000 0.02488 0.05061 0.07945 0.11285 0.15066
0.03236 0.00000 0.01697 0.03545 0.05771 0.08484 0.11601
0.10472 0.00000 0.00710 0.01700 0.03176 0.05160 0.07497
0.33889 -0.00011 -0.00760 -0.00813 -0.00220 0.00864 0.02194

µ 0.05357 0.05507 0.05757 0.06006 0.06256 0.06573
σ 0.05839 0.04940 0.04769 0.05395 0.06596 0.08119

Table 4: This table presents an overview of the expected shortfall of the struc-
tured fund mixed with a traditional portfolio. The upper section concerns the
expected shortfall, with the α in the first column, and different mixes between
the structured fund and the traditional portfolio (consisting of one third each
of cash, bonds, and equities) in the rest. The numbers in the headings are
respectively the allocation to structured funds, and then the allocation to the
traditional portfolio.
For reference, the two last lines give the volatility and the expected return for
the different mixes.

To some extent, the results of including a structured fund, based on a long
call, are opposite to the analysis of the hedge fund. Where the hedge fund
introduced a high return, but a non-negligible probability of having a very low
return, the structured fund blocks low returns (below zero in this case). If one
is interested in really low probabilities of having a return lower than a certain
threshold, then structured funds are an optimal choice.

Similar to the results, there is a certain level of confidence, (1 − α)100%,
below which only the structured fund would be interesting. In table Table 4, we
see that at a 90% confidence level (α = 0.1), it is no longer optimal to have only
structured funds in the portfolio. For example, a portfolio with 30% invested in
the mix of cash, bonds, and equities has a lower expected shortfall.

This illustrates that if the focus is on risk control, then structured funds are
a reasonable investments. However, in practice there are a few things that make
the real situation less favourable with these products.

For example,

� there are the additional costs of structured funds: typically there is a man-
agement fee which is disclosed in the prospectus, plus the option writer’s
undisclosed profit margin,

� there is a considerable entrance fee, and these products are less liquid
(monthly to weekly liquidity, compared to an equity fund that typically
has daily liquidity),

� these structured products are generally not available for the investment
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horizon relevant to the investor, and if they are tailor made to match
the investor’s horizon, then they are almost illiquid (and will be less cost
effective),

� this is an analysis for an investment horizon of one year: the results are
dramatically different for longer investment horizons.

Probably the most important aspect is that the results are different when
longer investment horizons are considered. This mechanism, whereby the down-
side risk shifts when the time horizon increases, is described for example in
Samuelson (1963) and De Brouwer and Van den Spiegel (2001). This actu-
ally means that if the investment horizon is only one year, then only very safe
investments should be considered.

Figure 12: An overview of the probability density functions of the assets used
in the examples. Note that the pdf of the structured investment is truncated.
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3.4 Additional Assumptions

By adding these assets, we make the following assumption on the correlations in
the covariance matrix. Note that the variances and the returns of the new assets
are directly derived through their construction. It is sufficient to calculate the
first and second moment from the distribution functions, in order to calculate
these parameters.

Σ =


0.04000 −0.00031 −0.00004 0.00035 0.00250
0.00031 0.01500 −0.00005 0.00035 0.00010
−0.00004 −0.00005 0.00420 0.00005 0.00010
0.00035 0.00035 0.00005 0.01124 0.00020
0.00250 0.00010 0.00010 0.00020 0.00449



µ =


0.12000
0.06000
0.02000
0.08500
0.07600


where the order of the assets is in both cases: equities; bonds; cash; hedge

fund; structured investment.

Case 6
Risk-Reward Optimization for Gaussian Returns

Example 11 (Three Gaussian Assets). Consider three assets (or asset classes)
that are all Gaussian (or at least elliptically) distributed and consider a risk-
reward optimization

Case 6
Optimal Portfolio Composition

Would VaR, ES and VAR be different here?

Question: Would VAR (σ) optimization yield different portfolio
compositions

(A) Yes

(B) No

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 13: Portfolios in the risk/reward plane.

Case 6

Gausian Equities, Bonds and Cash—inflation adjusted
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Figure 14: Recommended portfolios in function of ES.

Note that for Gaussian assets σ, V aR and ES lead to the same optimal portfolios.
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3.5 Risk Reward for Non-Gaussian Assets

Case 6
Risk-Reward Optimization for Non-Gaussian Returns

Example 12 (Non-Gaussian Assets). Consider three assets (or asset classes) that
are all Gaussian distributed and consider a risk-reward optimization, but add a
typical hedge fund and a typical capital guaranteed structure.

Case 7: Non-Gaussian Assets
The pdfs

Figure 15: The pdfs in the example (the y-axis for the structured fund is trun-
cated — this is a long call plus a deposit).

Case 7: Non-Gaussian Assets
Mean-ES and Mean-VAR Optimization

The minimum variance porftolio has a 17.5% probability to have negative re-
turns, while the minimum-ES portfolio has a 0% probability on negative returns.
For more details, see De Brouwer, 2012 – pg. 258

3.6 VaR as Risk Limit (e.g. UCITS IV)

VaR as Risk Limit in UCITS IV
For UCITS that are not managed relative to a benchmark UCITS IV defines

the “Absolute VaR” limit:

V aRUCITS ≤ 20%NAV

(c) Philippe De Brouwer — 24 —
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Figure 16: The min-VAR and min-ES portfolios compared.

Details are published in the General Guidelines of CESR/10-788

Case 7

VaR as Risk Limit (UCITS IV) - Risky Fund?

Question: Risky Bet Fund

Consider a structured fund that will pay in one year time 105% of the
initial investment (assume that it pays the capital back plus a coupon of
5% in one year), except if company X defaults in that year, then it pays
0% (all is lost). We estimate the probability that company X defaults in
one year to equal 0.7%.

(A) The V aRUCITS is −5%, so this is perfectly acceptable.

(B) The V aRUCITS is −5%, so this is not acceptable.

(C) The V aRUCITS is higher than 20%, and hence it is not acceptable.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Case 8

VaR as Risk Limit (UCITS IV) - Better Fund?
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Question: Better Diversified Fund

Consider a structured fund that will pay in one year time 105% of the
initial investment, if either company X or Y defaults then it pays 52.5%
of the initial investment, and if both companies X and Y default then it
pays zero. We estimate the default probability of both company X and Y
to equal 0.7%, and their default possibility is independently distributed.

(A) This is perfectly acceptable.

(B) This is not acceptable.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note: the same holds for the VaR limit in Basel II ICAAP. Examples:
Lehman Brothers, Dexia, . . .

3.7 A Risk Reward Indicator Based on Volatility

Case 9

A Risk Reward Indicator Based on Volatility (UICTS IV)

UCITS IV defines the “Risk Reward Indicator” as follows.

risk class volatility equal or above volatility less than
1 0% 0.5%
2 0.5% 2.0%
3 2.0% 5.0%
4 5.0% 10.0%
5 10.0% 15.0%
6 15.0% 25.0%
7 25.0% +∞

Table 5: The “risk classes” as defined by CESR in CESR/10-673, pg. 7, in
the same document the risk classes are also referred to as “risk and reward
indicator”.

Case 9

A Risk Reward Indicator Based on Volatility (UICTS IV)
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Example 13 (Risk Classification). Assume the assets from Example 12 plus one
“risky bond” (this could also be a structured fund based on a digital option)
that has a probability of 1% to loose 15% and a probability of 99% to gain 5%.
Then consider the risk class as defined by CESR/10-673. The results are as in
Table 6.

Case 9
A Risk Reward Indicator Based on Volatility (UICTS IV)

portfolio risk class σ ES0.01

equity 6 0.2000 0.4123
bonds 5 0.1200 0.2660

hedge fund 5 0.1062 0.5482
structured investment 4 0.0671 0.0000

risky bond 2 0.0198 0.1500
mix 1/2 equity + 1/2 bonds 5 0.1173 0.2223

Table 6: The risk classes for Example 39. CESR/ESMA’s method considers
the hedge fund that has roughly a 2.5% probability of loosing about 50% of its
value is in the same risk class as a bond fund. A structured fund that has no
risk to lose something ends up in the fourth risk class, but the risky bond that
has a 1% probability of loosing 15% is considered as very safe!

What do you think?

Question: What describes best your opinion about the “Risk
and Reward Indicator” in UCITS IV?

(A) Excellent choice of words and excellent idea

(B) Good idea, but . . . oh God

(C) Misleading because risk and reward cannot be reduced to one num-
ber

(D) Misleading because risk and reward cannot be reduced to one num-
ber and on top of that one has chosen an incoherent risk measure

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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What would you do?

Question: What would you do in the European Parliament

(A) I would propose a “Risk and Reward Indicator” based on VaR

(B) I would propose a “Risk Indicator” based on VaR

(C) I would propose a “Risk Indicator” based on ES

(D) I would propose a “Risk and Reward Indicator” based on ES

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Case 10
Bonus Example

Question: The Evil Banker’s Third Dilemma

How would a truly evil banker reduce the risk class of the “risky bond”
structure?

(A) Reduce the management fee

(B) Increase the management fee and reduce the maximal payoff

(C) Something else

(D) It cannot be done

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.8 More Cognitive Dissonance in UCITS IV

Case 11
Incoherence between the VaR-limit and the VAR-risk-class
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risk limit, based on VaR⇐⇒risk classification, based on standard deviation

Example 14. Consider a structured fund that offers a 1% probability to loose
21% and a 99% probability to gain 5%. Such fund would not be possible, because
its 1% V aRUCITS would be 21% (exceeding the limit and being classified as
“too risky”). Its volatility is 2.5870%, that is only risk class 3, hence considered
as safer than bonds—from our example, in the middle of the spectrum, and
perfectly acceptable.

3.9 Legislation

Incoherent risk measures in legislation

legislation “risk measure” result
UCITS VaR and VAR non suitable assets
Basel VaR crisis

Solvency VaR insolvency

Table 7: Law makers increasingly use non-coherent risk measures in legislation,
resulting in encouraging to take large bets, ignore extreme risks and mislead
investors. All building up to the next crisis . . . building up to the next global
disaster.

4 The Limits of Coherent Risk Measures

The Limits of Coherent Risk Measures

Liquidity

Question: Will a coherent risk measure still work in case liq-
uidity dries up

(A) Yes

(B) No

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The Limits of Coherent Risk Measures

The Limits of Coherent Risk Measures

Question: Basel II with ES?

Would it make sense to replace V aR in the capital requirements for
banks by ES?

(A) No, it would not be better

(B) Yes, it would be better, but still not
perfect and could still be dangerous in
case of a crisis?

(C) Yes, it could be trusted

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Limits of Coherent Risk Measures

Example 15 (Decreasing Marginal Utility). Coherent risk measures do not seem
to be congruent with decreasing marginal utility. Would it make sense to relax
the homogeneity axiom when modelling preferences?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Limits of Coherent Risk Measures

Question: Risk and Reward Indicator?

Could a coherent risk measure ever be a “risk and reward indicator”?

(A) Yes

(B) No

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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5 Conclusions

Conclusions
Coherence does matter and its importance cannot be underestimated

A. Coherence does matter.

B. An incoherent risk measure will lead to counter-intuitive and dangerous
results.

C. Hence, it is worth to make a rough estimate about the left tail of the
distribution rather than ignoring it.

D. Also Coherent Risk measures are a simplified reduction of the complex
reality
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Nomenclature

α a level of probability, α ∈ [0, 1] (to characterize the tail risk α will be
“small”—for example for a continuous distribution one can say with a
confidence level of (1−α) that the stochastic variable in an experiment
will be higher than the α-quantile)

δ(.) the Dirac Delta function: δ(x − a) =

{
0 if a ̸= x

+∞ if x = a
, but so that∫ +∞

−∞ δ(x− a) dx = 1

Λ Leverage (expressed as a percentage)

ϕ(p) the risk spectrum (aka risk aversion function)

ρ a risk measure, ρ : V 7→ R

ESα(P) Expected Shortfall = the average of the α100% worst outcomes of P;
aka CVaR, Tail-VaR, etc.

FX(x) the cumulative distribution function of the stochastic variable X

Mϕ(X) a spectral risk measure
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Coherent Risk Measures

p a probability (similar to α)

V AR(X) Variance: V AR(X) = E[X2]− E[X]2 = σ2

V aRα(P) Value at Risk

ATM at-the-money, i.e. the option strike price equals the value of the under-
lying asset

BCE Before Common Era

DY Dividend Yield (expressed as a percentage)

HF Hedge Fund. This refers to the hypothetical example constructed, rather
than to the real asset class.

pdf probability density function

WEL Worst Expected Loss
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