Introduction to Quantum Computing

XII KNMF Conference

Prepared by: Dr. Philippe J.S. De Brouwer
Honorary Consul of Belgium in Kraków
guest professor at the UJ, AGH, UEK and UW
board member of AGH and ISK
SVP at HSBC in Kraków
$\|$ AGH $\|$
Team:
AGH University of Krakow
Date: 2024-04-04

HSBC

Table of Contents

\qquad
Introduction
Basics of Quantum Physics 9
Quantum Bits (Qubits) 21
Quantum Gates and Circuits 24
Quantum Algorithms 46
How to build a quantum computer 55
Challenges in Quantum Computing 64
Future of Quantum Computing 68
Limits of Quantum Computers 85
Conclusions 88

Introduction

$\langle\mathrm{HSBC}$

The three stages of computers: (1) Analogue

Figure: Analogue counting devices

The Analytical Engine - 1837 (concept)

Figure: In 1837 Charles Babage proposed the first general purpose computer: the "analytical engine". Legend: 1: memory, 2: the mill (CPU), 3: steam engine, 4: printer, 5: operation cards, hnroduw: variable cards, 7: number cards, 8: barrel (contcoller)

The three stages of computers: (2) Digital

Figure: Digital Computers

The three stages of computers: (2) Digital

Figure: The fastest supercomputer in the world: Frontier, HPE CRAY EX235A, AMD OPTIMIZED 3RD GENERATION EPYC 64C 2GHZ - USA, Oakr Ridge - Rmax = 1.5 Exa Introucucifflops $=1.5 \times 10^{18}$ Flops, using 21 ' $000 \mathrm{KwH}-$ fotoć Oak Ridge

The three stages of computers: (3) Quantum

Figure: The timeline for quantum computers

Basics of Quantum Physics

The quantum world

Imagine a world where

- things are largely empty space (much more than 99.9999999999996% empty)
- things are waves and waves are things
- things can be in an infinite amount of places at the same time
- it is not possible to observe anything without changing what we observe forever and everywhere
- so and event on one planet can influence reality in another galaxy, and
- this influencing happens faster than the speed of light
- it is possible to get through walls even without sufficient energy to do so
- where no properties like color, softness, compassion, intelligence, cold, wet, etc. exists
- things have only mathematical properties
- vacuum is not empty

Could this world underlie our familiar and logical world?

Thomas Young's double slit experiment (1801)

Figure: The double slit experiment. - (images licensed under Creative Commons Cco 1.0 Universal Public Domain Dedication and Creative Commons Attribution-Share Alike 3.0 Unported (author Fu-Kwun Hwang))

Schrödinger's Equation

Quantum entities are described by the Schödinger equation:

$$
i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\hat{H} \Psi(\mathbf{r}, t)
$$

The probabilities to find the entity are then given by

$$
P(\mathbf{r}, t)=|\Psi(\mathbf{r}, t)|^{2}
$$

Schrödinger's Equation

Quantum entities are described by the Schödinger equation:

$$
i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\hat{H} \Psi(\mathbf{r}, t)
$$

The probabilities to find the entity are then given by

$$
P(\mathbf{r}, t)=|\Psi(\mathbf{r}, t)|^{2}
$$

Superposition

The equation is linear, hence linear combinations of solutions are also solutions.

Schrödinger's Equation

Quantum entities are described by the Schödinger equation:

$$
i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)=\hat{H} \Psi(\mathbf{r}, t)
$$

The probabilities to find the entity are then given by

$$
P(\mathbf{r}, t)=|\Psi(\mathbf{r}, t)|^{2}
$$

Superposition

The equation is linear, hence linear combinations of solutions are also solutions.

Example: Qubit

If an object can have a quantum state "up" or "down" with equal probabilities, then it is described by $\left.\Psi=\frac{1}{\sqrt{2}}|u p\rangle+\frac{1}{\sqrt{2}} \right\rvert\,$ down \rangle. When measured one state is observed.

Schrödinger's Cat thought experiment

Figure: Poison is released when the radioactive atom decayes. As long as the box is not opened the radioactive atom is in superposition $\Psi_{\text {atom }}=\alpha_{1} \mid$ decayed $\rangle+\alpha_{2} \mid$ not decayed \rangle, and Bastos onenee the cat must be $\Psi_{\text {cat }}=\alpha_{1} \mid$ dead $\rangle+\alpha_{2} \mid$ alivel|c

Entanglement

A system of two qubits can be characterized by

$$
\alpha_{1}|00\rangle+\alpha_{2}|01\rangle+\alpha_{3}|10\rangle+\alpha_{4}|11\rangle
$$

where

- $|01\rangle$ means: the first qubit is $|0\rangle$ and the second $|1\rangle$
- $\sum_{i=1}^{4}\left|\alpha_{i}\right|^{2}=1$, with $\forall i: \alpha_{i} \in \mathbb{C}$

Figure: Al's interpretation of wedding rings in entanglement. Microsoft's copilot

Entanglement

If two or more of α_{i} are non-zero, qubits are entangled if knowing one determines the state of the other.

Example

$$
\begin{aligned}
& \frac{\sqrt{2}}{2}|11\rangle+\frac{\sqrt{2}}{2}|10\rangle \text { is not entangled } \\
& \frac{\sqrt{2}}{2}|01\rangle+\frac{\sqrt{2}}{2}|10\rangle \text { is entangled }
\end{aligned}
$$

Figure: Al's interpretation of entanglement. Microsoft's copilot

Amplitudes and Probabilities

For a single qubit: unit sphere in \mathbb{C}^{2} with the quantum state $\alpha_{1}|0\rangle+\alpha_{2}|1\rangle$ such that $\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=1$. Notes

- The state can be re-written as $|\cos \theta|^{2}+|\sin \theta|^{2}=1$, or $\left|\alpha_{1}\right|^{2}=\cos ^{2} \theta$ and $\left|\alpha_{2}\right|^{2}=\sin ^{2} \theta$.
- $\left|\alpha_{1}\right|^{2}$ is the probability of measuring $|0\rangle$ and $\left|\alpha_{2}\right|^{2}$ is the probability of measuring $|1\rangle$.

Amplitudes and Probabilities

For a single qubit: unit sphere in \mathbb{C}^{2} with the quantum state $\alpha_{1}|0\rangle+\alpha_{2}|1\rangle$ such that $\left|\alpha_{1}\right|^{2}+\left|\alpha_{2}\right|^{2}=1$.
Notes

- The state can be re-written as $|\cos \theta|^{2}+|\sin \theta|^{2}=1$, or $\left|\alpha_{1}\right|^{2}=\cos ^{2} \theta$ and $\left|\alpha_{2}\right|^{2}=\sin ^{2} \theta$.
$-\left|\alpha_{1}\right|^{2}$ is the probability of measuring $|0\rangle$ and $\left|\alpha_{2}\right|^{2}$ is the probability of measuring $|1\rangle$.

Probabilities are real numbers and add up to 1, amplitudes are complex and the sum of absolute values adds up to 1 . This allows for wave-like behaviour: interference.

Quantum Interference

Constructive interference

Destructive interference

Figure: Quantum particles can influence others or themselves (via superposition) and disappear in certain places.

Well ...

Is the universe local and real?

Figure: Al's interpretation of a universe that is not local nor real. Microsoff's copilot

Quantum Bits (Qubits)

HSBC

The QuBit

Figure: The qubit can be visualized on the Bloch-Sphere. Image licensed under Creative Commons

The QuBit

Figure: The qubit can be visualized on the Bloch-Sphere. Figure: Al's interpretation of a qubit. Image licensed under Creative Commons

Quantum Gates and Circuits

HSBC

Classical Computers

Figure: We use transistors to create logical states of 1 and 0.

Logical Gates

Figure: Those transistors are used to create logical gates that are in turn building blocks for logical circuits.

Quantum Gates

quantum gate

a quantum logic gate (or quantum gate) is a basic quantum circuit operating on a small number of qubits.

Examples of Quantum Gates

Figure: Examples of popular quantum gates. There are in fact an uncountable infinity of quantum gates.

Examples of quantum gates on one qubit

The vector representation of $|\boldsymbol{a}\rangle=\alpha_{1}|1\rangle+\alpha_{2}|0\rangle$ is $\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2}\end{array}\right]$

Examples acting on one qubit:

1. Identity gate: $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
2. Pauli X-gate (rotation around X axis):

$$
X=\sigma_{x}=\mathrm{NOT}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

3. Pauli Y-gate: $Y=\sigma_{y}=\left[\begin{array}{cc}0 & -i \\ i & 0\end{array}\right]$
4. Pauli Z-gate: $Z=\sigma_{Z}=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

Example of quantum gates: creating superposition

Hadamard Gate acts on a single qubit. It maps the basis states $|0\rangle \mapsto \frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and $|1\rangle \mapsto \frac{|0\rangle-|1\rangle}{\sqrt{2}}$ (an equal superposition state if given a computational basis state). The two states $(|0\rangle+|1\rangle) / \sqrt{2}$ and $(|0\rangle-|1\rangle) / \sqrt{2}$ are sometimes written $|+\rangle$ and $|-\rangle$ respectively. The Hadamard gate performs a rotation of π about the axis $(\hat{x}+\hat{z}) / \sqrt{2}$ at the Bloch sphere, and is therefore involutory.
$H=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$

Example of a quantum gate on 2 qubits and entanglement

Controlled gates act on 2 or more qubits, where one or more qubits act as a control for some operation.

controlled NOT gate (or CNOT or CX)

acts on 2 qubits, and performs the NOT operation on the second qubit only when the first qubit is $|1\rangle$ (otherwise leaves it unchanged). With respect to the basis $|00\rangle,|01\rangle,|10\rangle,|11\rangle$ it is represented by the Hermitian unitary matrix:

$$
\mathrm{CNOT}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Measuring Qubits

Measurement = reduce the quantum states to a classical state.
Therefore, measurement is irreversible and not a quantum gate.
The probability of finding a state is the modulus of its amplitude ${ }^{1}$

$$
\text { if } \Psi=\alpha|x\rangle+\ldots, \text { then } P[|x\rangle]=|\alpha|^{2}
$$

For example, measuring a qubit with the quantum state $\frac{|0\rangle-i|1\rangle}{\sqrt{2}}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}1 \\ -i\end{array}\right]$ will yield with equal probability either $|0\rangle$ or $|1\rangle$

[^0]
Building your first quantum circuit

What is a quantum computer?

Figure: Photosynthesis is possible thanks to quantum mechanics. - own photo 2014

An example of a simulation: the Fermiac

Figure: The FERMIAC, or Monte Carlo trolley, was an analog device invented by Enrico Fermi to implement studies of neutron transport. - image under Creative Commons Attribution-Share Alike 1.0

Aspects of Quantum Computing: Exponential Power

- qubit $\rightarrow 2$ quantum states dimensions: $\alpha|0\rangle+\beta|1\rangle$

Aspects of Quantum Computing: Exponential Power

- qubit $\rightarrow 2$ quantum states dimensions: $\alpha|0\rangle+\beta|1\rangle$
- 2 qubits $\rightarrow 4$ states: $\alpha_{1}|00\rangle+\alpha_{2}|01\rangle+\alpha_{3}|10\rangle+\alpha_{4}|11\rangle$

Aspects of Quantum Computing: Exponential Power

- qubit $\rightarrow 2$ quantum states dimensions: $\alpha|0\rangle+\beta|1\rangle$
- 2 qubits $\rightarrow 4$ states: $\alpha_{1}|00\rangle+\alpha_{2}|01\rangle+\alpha_{3}|10\rangle+\alpha_{4}|11\rangle$
- 3 qubits $\rightarrow 8$ quantum state dimensions

Aspects of Quantum Computing: Exponential Power

- qubit $\rightarrow 2$ quantum states dimensions: $\alpha|0\rangle+\beta|1\rangle$
- 2 qubits $\rightarrow 4$ states: $\alpha_{1}|00\rangle+\alpha_{2}|01\rangle+\alpha_{3}|10\rangle+\alpha_{4}|11\rangle$
- 3 qubits $\rightarrow 8$ quantum state dimensions
- 6 qubits $\rightarrow 64$ quantum state dimensions (card deck)

Aspects of Quantum Computing: Exponential Power

- qubit $\rightarrow 2$ quantum states dimensions: $\alpha|0\rangle+\beta|1\rangle$
- 2 qubits $\rightarrow 4$ states: $\alpha_{1}|00\rangle+\alpha_{2}|01\rangle+\alpha_{3}|10\rangle+\alpha_{4}|11\rangle$
- 3 qubits $\rightarrow 8$ quantum state dimensions
- 6 qubits $\rightarrow 64$ quantum state dimensions (card deck)
- 10 qubits $\rightarrow 1024$ quantum state dimensions (810 listed companies on WSE)

Aspects of Quantum Computing: Exponential Power

- qubit $\rightarrow 2$ quantum states dimensions: $\alpha|0\rangle+\beta|1\rangle$
- 2 qubits $\rightarrow 4$ states: $\alpha_{1}|00\rangle+\alpha_{2}|01\rangle+\alpha_{3}|10\rangle+\alpha_{4}|11\rangle$
- 3 qubits $\rightarrow 8$ quantum state dimensions
- 6 qubits $\rightarrow 64$ quantum state dimensions (card deck)
- 10 qubits $\rightarrow 1024$ quantum state dimensions (810 listed companies on WSE)
- 20 qubits $\rightarrow 1.048576 \times 10^{6}$ quantum state dimensions (ca. number of all possible liquid investments)

Aspects of Quantum Computing: Exponential Power

- qubit $\rightarrow 2$ quantum states dimensions: $\alpha|0\rangle+\beta|1\rangle$
- 2 qubits $\rightarrow 4$ states: $\alpha_{1}|00\rangle+\alpha_{2}|01\rangle+\alpha_{3}|10\rangle+\alpha_{4}|11\rangle$
- 3 qubits $\rightarrow 8$ quantum state dimensions
- 6 qubits $\rightarrow 64$ quantum state dimensions (card deck)
- 10 qubits $\rightarrow 1024$ quantum state dimensions (810 listed companies on WSE)
- 20 qubits $\rightarrow 1.048576 \times 10^{6}$ quantum state dimensions (ca. number of all possible liquid investments)
- 60 qubits $\rightarrow 1.1529215 \times 10^{18}$ states (ca. 10^{19} grains of sand on earth)

Aspects of Quantum Computing: Exponential Power

- qubit $\rightarrow 2$ quantum states dimensions: $\alpha|0\rangle+\beta|1\rangle$
- 2 qubits $\rightarrow 4$ states: $\alpha_{1}|00\rangle+\alpha_{2}|01\rangle+\alpha_{3}|10\rangle+\alpha_{4}|11\rangle$
- 3 qubits $\rightarrow 8$ quantum state dimensions
- 6 qubits $\rightarrow 64$ quantum state dimensions (card deck)
- 10 qubits $\rightarrow 1024$ quantum state dimensions (810 listed companies on WSE)
- 20 qubits $\rightarrow 1.048576 \times 10^{6}$ quantum state dimensions (ca. number of all possible liquid investments)
- 60 qubits $\rightarrow 1.1529215 \times 10^{18}$ states (ca. 10^{19} grains of sand on earth)
- 175 qubits $\rightarrow 4.7890486 \times 10^{52}$ states (ca. 10^{50} atoms on earth)

Aspects of Quantum Computing: Exponential Power

- qubit $\rightarrow 2$ quantum states dimensions: $\alpha|0\rangle+\beta|1\rangle$
- 2 qubits $\rightarrow 4$ states: $\alpha_{1}|00\rangle+\alpha_{2}|01\rangle+\alpha_{3}|10\rangle+\alpha_{4}|11\rangle$
- 3 qubits $\rightarrow 8$ quantum state dimensions
- 6 qubits $\rightarrow 64$ quantum state dimensions (card deck)
- 10 qubits $\rightarrow 1024$ quantum state dimensions (810 listed companies on WSE)
- 20 qubits $\rightarrow 1.048576 \times 10^{6}$ quantum state dimensions (ca. number of all possible liquid investments)
- 60 qubits $\rightarrow 1.1529215 \times 10^{18}$ states (ca. 10^{19} grains of sand on earth)
- 175 qubits $\rightarrow 4.7890486 \times 10^{52}$ states (ca. 10^{50} atoms on earth)
- 275 qubits $\rightarrow 6.0708403 \times 10^{82}$ quantum states (ca. 10^{82} atoms in the visible universe)

Note: entanglement

To simulate quantum states on a Turing machine, we need to encode all possible entangled states too. The number of states in a quantum processor is 2^{N}, the complexity with entanglement scales as follows:

1. 10 qubits $\rightarrow 1,024$ quantum states $\xrightarrow{\text { entanglement }} 16,000$ Bits $=16 \mathrm{~KB}$
2. 500 qubits \rightarrow more quantum states than atoms in the visible universe $\xrightarrow{\text { entanglement }}$ not enough atoms in the visible universe

Quantum Algorithms

HSBC

Factoring

PGP relies on factoring large numbers

0141183460	209889366574	1082522473766674
469231	$\text { , } 405864861512$	4843049757785274018
303715884105	642566102225	584
727	93863921	2576355509746402614 775567

Factoring

PGP relies on factoring large numbers

170141183460	4	3571082522473766674
	$\begin{aligned} & 14 \\ & 12 \end{aligned}$	4843049757785274018
303715884105	642566102225	11572612079584
727	93863921	2576355509746402614

\# digits Supercomputer

Factoring

PGP relies on factoring large numbers

0	209889366574	3571082522473766674
	405864861512	4843049757785274018
30371588410	642566102225	572612079584
727	93863921	2576355509746402614

\# digits	Supercomputer
10,000	0 s
100,000	0.6 year
200,000	78,254 yrs
300,000	449 min. yrs
400,000	$72 \times$ age of universe

Factoring

PGP relies on factoring large numbers

170141183460	209889366574	
469231731687	405864861512	
303715884105	642566102225	
727	93863921	2576355509746402614

\# digits	Supercomputer	Quantum comp.
10,000	0 s	56 s
100,000	0.6 year	2 min.
200,000	78,254 yrs	2 min.
300,000	$449 \mathrm{mln} . \mathrm{yrs}$	2 min.
400,000	$72 \times$ age of universe	3 min.

Factoring

Shor's Algorythm in quantum computers does not scale exponentially

Figure: Time needed to factor large numbers in classical approach and with quantum

Programming a Universal Quantum Computer

Lov Grover's Algorithm

Figure: Grover's algorithm only needs $O(\sqrt{N})$ steps to find matching entry in unstructured data.

Breaking Codes and Passwords

Shor's Alogorithm to factor numbers

Large Linear Systems

$$
\left[\begin{array}{ccc}
A_{11} & \ldots & A_{1 N} \\
\vdots & \ddots & \vdots \\
A_{M 1} & \ldots & A_{M N}
\end{array}\right] \times\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{N}
\end{array}\right]
$$

with up to s non-zero $A_{i j}$ per row/column and condition number k

Classical methods solve this in $O(N s k) \ldots$ quantum algorithms need $O(\log (N) s k)$

How to build a quantum computer

HSBC

Models of Quantum Computing

Physical Realisations of Qubits

Superconducting	Trapped Ions	Photon Polarization
typically a tiny line or loop of metal that behaves as one atom	ions trapped (with electromagnetic fields) and manipulated using lasers or microwave radiation	The polarization of light is the qubit
		Energy Levels of
Spin Qubits	Topological	Hydrogen Atom
The quantum mechanical spin state of an electron or proton can be used as qubits	using Majorano Zero-Mode Quasiparticles (sort of non-Abelian anyon)	The electron in a hydrogen atom can be in its ground state or in an excited state.

Quantum Supremacy

Definition (quantum supremacy)

Quantum supremacy is the potential ability of quantum computing devices to solve problems that classical computers practically cannot.

Expectation: 50 sufficiently coherent q -bits needed for quantum supremacy.

Definition (quantum advantage)

Quantum advantage is the potential to solve problems faster. In computational complexity-theoretic terms, this generally means providing a superpolynomial speedup over the best known or possible classical algorithm.

Current State: Quantum Supremacy overconfident claims

NEWS
23 OCTOBER 2019

Hello quantum world! Google publishes landmark quantum supremacy claim

The company says that its quantum computer is the first to perform a calculation that would be practically impossible for a classical machine.

Ellzabeth Gibney

- $\quad-$

\& PDF version
related articles
Beyond quanturmsupremacy

Quantumgold rush: the

 Quanturngoid rush: theprivatefunding pouring into quantumstart-ups

Figure: Submitted, October $1^{\text {st }}, 2024$ - https://arxiv.org/abs/2403.00910

Current State: Quantum Supremacy with annealers

Figure: Submitted, March $1^{\text {st }}, 2024$ - https://arxiv.org/abs/2403.00910

D-Wave

Figure: The quantum computer of D-Wave (pictures: D-Wave) - since 2007

Adiabatic Algorithm

How D- Mave Systems Mork

In mature. physicall systems tend to evolve townard their lowest emergy state: objects sllide down hills, hot things cool down. and so on. This behavior allso applies to quantum systems. To imagine this, think of a traveler looking for the best solution by finding the low

Classical algorithmis seek the lowest walley by placing the traveler at some point in the lamiscape amd allowimg that traweler to move based on locall variations. WMhile it is gemerally mostefficiemt to move dovinhill arnd avoid climbing hills that are too higlh, such classical allgorithms are prone to lleadimg the traveler into nearby valleys that may mot be the global minimum. Numerous trials are typically requiredi, with many travelers begimming their journeys from different points.

In contrast, quanturn anmealing begins with the traveler simultameously occupying many coordinates thamks to the quantum phenomenon of superposition. Theprobability or being at any given coordinate smoothly evolves as annealing progresses. With the probability increasing around the coordinates of deep valleys. Quanturn tumneling allows the traveller topass through hills-rather than be forceditoclimb thern-reducing the chance of becoming trapped in valleys that are not the global minimum. Quantum entanglement further inmproves the outcorme by allowime the travelerto discover correlations between the coordinates that lead to deep valleys

Figure: https://www.dwavesys.com/quantum-computing

Logical Quibits: recent progress: 2024-03-04

Beyond NISQ: Microsoft And Quantinuum Research Project Yields 'Most Reliable Logical Qubits Ever Recorded'

Quanturn Computing Business, Research
Matt Swayne - April 3, 2024

Insicier Brief

- Microsoft and Quantinuum created logical qubits with an error rate 800 times better than plhysical qubits and made four highly reliable logical qubits from only
30 physical qubits.
- By applying Microsoft's breakthrough qubit virtualization systern - with error ran more than 14,000 individual experiments without a single uncorrected error.
- The companies say the advance will help move quantum computing out of the current Noisy Intermediate-Scale Quantum (NISQ) level to Level 2 Resilient quantum computing.

Figure: https://thequantuminsider.com 2024-04-03 - also on https://blogs.microsoft.com and https://www.quantinuum.com.

Challenges in Quantum Computing

Decoherence

Coherence and Decoherence

Systems interacting with the environment in which they reside generally become entangled with that environment, a phenomenon known as quantum decoherence. This can explain why, in practice, quantum effects are difficult to observe in systems larger than microscopic.

Decoherence

Note: temperature

Coherence and Decoherence

Systems interacting with the environment in which they reside generally become entangled with that environment, a phenomenon known as quantum decoherence. This can explain why, in practice, quantum effects are difficult to observe in systems larger than microscopic.

$$
v_{r m s}=\sqrt{\frac{3 k T}{m}}
$$

with:

- $v_{r m s}$ the average speed of a molecule in a gas in $\frac{m}{s}$
- $k=1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}$
- T the temperature in Kelvin
- m the molecular mass in Kg

Scalability

Each qubit needs a connection ...

Figure: Intel Corporation's 49-qubit quantum computing test chip, "Tangle Lake," - 2018. Credit: Intel Corporation

Future of Quantum Computing

HSBC

IBM's Road-map

Figure: IBM's Quantum Roadmap (newsroom.ibm.com)

Applications for quantum computers

- Modeling of the quantum world
- Biochemical modeling
- Climate modeling
- Material Science (eg. semiconductor, semiconductors)
- Cryptography
- Optimizations: financial markets, traffic optimization, resource planning, etc.

Applications for quantum computers

- Modeling of the quantum world
- Biochemical modeling
- Climate modeling
- Material Science (eg. semiconductor, semiconductors)
- Cryptography
- Optimizations: financial markets, traffic optimization, resource planning, etc.

Figure: McKinsey Quantum Technology Monitor (April 2023) predicts USD 1.3 trillion in value by 2035 - source: https://www.mckinsey.com

Use cases in banking

- Optimization:

1. portfolio optimization
2. collateral optimization
3. stress testing
4. transaction settlement
5. asset pricing
6. ATM replenishment

- Machine Learning
- fraud detection
- credit scoring
- synthetic data and data augmentation

Use cases in banking

- Optimization:

1. portfolio optimization
2. collateral optimization
3. stress testing
4. transaction settlement
5. asset pricing
6. ATM replenishment

- Machine Learning
- fraud detection
- credit scoring
- synthetic data and data augmentation

- Simulations:

- random number generator
- Monte Carlo, LPDE simulations, etc.
- asset valuation
- ES and VaR calculations
- Encryption:
- quantum key encryption
- quantum currency
- quantum blockchain

Resulting Advantages

quadratic to exponential speedup

- better risk management

Boston Consulting Group estimates a value of \$42B to \$67B for financial institutions

Resulting Advantages

quadratic to exponential speedup

- better risk management
- lower costs

Boston Consulting Group estimates a value of \$42B to \$67B for financial institutions

Resulting Advantages

quadratic to exponential speedup

- better risk management
- lower costs
- greener computing

Boston Consulting Group estimates a value of \$42B to \$67B for financial institutions

Resulting Advantages

quadratic to exponential speedup

- better risk management
- lower costs
- greener computing
- better forecasting

Boston Consulting Group estimates a value of \$42B to \$67B for financial institutions

Resulting Advantages

quadratic to exponential speedup

- better risk management
- lower costs
- greener computing
- better forecasting
- more suitable investment

Boston Consulting Group estimates a value of \$42B to \$67B for financial institutions

Resulting Advantages

quadratic to exponential speedup

- better risk management
- lower costs
- greener computing
- better forecasting
- more suitable investment
- etc.

Boston Consulting Group estimates a value of \$42B to \$67B for financial institutions

Why is HSBC interested

- Quantum computing could revolutionise financial services in areas like portfolio optimisation, fraud detection and cybersecurity.
- Quantum computers promise to deliver a step-change in computational power, with the potential to tackle highly complex tasks far beyond the capabilities of today's machines
- The quantum sector is estimated USD1.3 trillion in value by 2035
source: HSBC and quantum

HSBC's strategy

1. Working with a range of organisations like IBM, Fujitsu and Quantinuum, leading academic institutions, and governmental organisations, to put us at the forefront of the financial services industry in exploring how to integrate quantum computing into our products and services
2. Building a dedicated quantum research team and in-house team of PhD scientists at HSBC to formalise our use cases into deep research projects and develop patents and quantum products
3. Bank-wide strategy: Collaborating across business lines and functions to develop real world use cases to improve our processes and prepare for a quantum-secure economy
source: HSBC and quantum

Proofs of Concept in HSBC

Pricing
 Optimisation

HSBC facilitates US\$760B of trade annually. We aim to develop a POC which can provide real-time, flexible pricing options.

Collateral
Optimisation

Develop a hybrid quantum-classical POC to optimise allocation of collateral in the most cost effective way.

QRNG for Monte Carlo

Use quantum random number generation (QRNG) to improve Monte Carlo Simulations in stochastic modelling.

Quantum Machine
Learning

Use Quantum Machine Learning algorithms to improve fraud detection rate.

Quantum Key
Distribution

A method of key exchange which is secure against quantum attack. Aim to set up QKD based protocols between two locations

Figure: Proofs of concept in HSBC. source: HSBC and quantum

Quantum Key Distribution in HSBC

Figure: Proofs of concept in HSBC: quantum key distribution. source: HSBC and quantum

HSBC's Philip Intallura

Figure: Proofs of concept in HSBC: quantum key distribution. source: HSBC news

Limits of Quantum Computers

HSBC

Limits of Quantum Computers: Complexity Theory

Figure: BQP -bounded-error quantum polynomial time- is the quantum equivalent of BPP -bounded-error probabilistic polynomial time

Turing Machines are Turing Complete

Turing Complete

A system is Turing complete if it can simulate any Turing machine, meaning it can compute any Turing-computable function. Essentially, it can perform any calculation that a computer with unlimited resources could. Most modern programming languages are Turing complete.
In practical terms, a Turing Complete system means a system in which a program can be written that will find an answer, although with no guarantees regarding runtime or memory use.

While a (theoretical) Quantum Turing Machine is Turing Complete, there are much practical barriers.

Conclusions

(X) нSBC

Conclusions: Q-Day is near

I predict that in 1 to 10 years quantum computers will bring us

- insight in quantum physics

Conclusions: Q-Day is near

I predict that in 1 to 10 years quantum computers will bring us

- insight in quantum physics
- new medications, better batteries, better materials, etc.

Conclusions: Q-Day is near

I predict that in 1 to 10 years quantum computers will bring us

- insight in quantum physics
- new medications, better batteries, better materials, etc.
- other encryption

Conclusions: Q-Day is near

I predict that in 1 to 10 years quantum computers will bring us

- insight in quantum physics
- new medications, better batteries, better materials, etc.
- other encryption
- the ability to to gather more data and use it

Conclusions: Q-Day is near

I predict that in 1 to 10 years quantum computers will bring us

- insight in quantum physics
- new medications, better batteries, better materials, etc.
- other encryption
- the ability to to gather more data and use it
- all kinds of optimizations, such as better optimized investment portfolios

Conclusions: Q-Day is near

I predict that in 1 to 10 years quantum computers will bring us

- insight in quantum physics
- new medications, better batteries, better materials, etc.
- other encryption
- the ability to to gather more data and use it
- all kinds of optimizations, such as better optimized investment portfolios
- Artificial General Intelligence

Conclusions: Q-Day is near

I predict that in 1 to 10 years quantum computers will bring us

- insight in quantum physics
- new medications, better batteries, better materials, etc.
- other encryption
- the ability to to gather more data and use it
- all kinds of optimizations, such as better optimized investment portfolios
- Artificial General Intelligence
- greener computing (e.g. bitcoin alone is responsible for 1.5% of the world's CO_{2} production)

Conclusions: Q-Day is near

I predict that in 1 to 10 years quantum computers will bring us

- insight in quantum physics
- new medications, better batteries, better materials, etc.
- other encryption
- the ability to to gather more data and use it
- all kinds of optimizations, such as better optimized investment portfolios
- Artificial General Intelligence
- greener computing (e.g. bitcoin alone is responsible for 1.5% of the world's CO_{2} production)
- but most exciting: . . . answers to questions that we don't know yet.

Further Reading

- Michio Kaku, Quantum Supremacy: How the Quantum Computer Revolution Will Change Everything - order on Amazon.com
- McKinsey, McKinsey Quantum Technology Monitor, April 2023 - download
- McKinsey, 2020, "How quantum computing could change financial services" download
- IBM, "The Quantum Decade" (e-book) - download
- E. Rieffel and W Polak, MIT Press, "Quantum Computing, a Gentle Introduction" download
- Quantum Computing for the Quantum Curious, C. Hughes et al., Springer download
- a list of books: download

Thank you for your attention!

handouts of this presentation

Philippe's business card

[^0]: ${ }^{1}$ This is known as the Born rule and appears as a stochastic non-reversible operation as it sets with a given probability the quantum state equal to the basis vector that represents the measured state.

