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1 Classical Computers

Von Neuman Computers

Logical Gates

The Fastests Supercomputer: EXA FLOPS
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Figure 1: We use transistors to create logical states of 1 and 0.

Figure 2: Those transitors are used to create logical gates that are in turn
building blocks for logical circuits.

Figure 3: More info wikipedia.org, and top500.org
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The Fastest Supercomputer Today: Summit

Details

• Site: DOE/SC/Oak Ridge National Laboratory

• System URL: https://www.olcf.ornl.gov/summit/

• Manufacturer: IBM & NVIDIA

• Cores: 2,414,592

• Processor: IBM POWER9 and NVIDIA Tesla V100 GPUs

• Installation Year: 2018

• Power consumption: Approx. 10 MW

• OS: Customized Linux (RHEL-based)

Performance

• Linpack Performance (Rmax): 148.6 PFLOP/s

• Theoretical Peak (Rpeak): 200 PFLOP/s

Limits of Von Neuman Machines

• Heat

– The main reason why clock speed is not increasing

– and muliti core archtectures are the solution

• Quantumn Limitations

– Limit the accuracy to which chips can be made with current etching
technology

– Limit the size to which transistor gates can be miniaturised

• Relativistic Limitations

– in a 5 GHz computer maximal processor size is: 4cm = 0.5∗c/5∗109/2

2 What Are Quantum Computers?

QBits

(c) Philippe De Brouwer — 4 —
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Figure 4: Source: nextplatform.com

Figure 5: A quantum circuit: quantum gate operations on q-bits. Source:
ibm.com

Operations

Aspects of Quantum Computing: Superposition

Superposition is a quantum state that is a combination of 2 mutually
exclusive states

|ψ⟩ = α|0⟩+ β|1⟩

where α and β are complex numbers representing the probability amplitudes
of the qubit being in states |0⟩ and |1⟩, respectively.

Note that if α > 0 and β > 0 then the qubit’s state contains both |0⟩ and
|1⟩

Superposition is a fundamental principle in quantum mechanics where a
quantum system can exist in multiple states simultaneously. For a qubit, this
means it can be in a state that is a combination of the basis states |0⟩ and |1⟩.

Examples:

A. Equal Superposition: A qubit in an equal superposition of |0⟩ and |1⟩

— 5 — (c) Philippe De Brouwer
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can be represented as:

|ψ⟩ = 1√
2
|0⟩+ 1√

2
|1⟩

Here, the qubit has an equal probability of being measured in either state.

B. Unequal Superposition: A qubit with different amplitudes might look
like:

|ψ⟩ =
√
3

2
|0⟩+ 1

2
|1⟩

In this case, the qubit is more likely to be measured in state |0⟩ than in
state |1⟩.

C. Measurement: Upon measurement, the qubit collapses to one of the
basis states, either |0⟩ or |1⟩, with probabilities given by |α|2 and |β|2,
respectively.

These examples illustrate how superposition allows qubits to encode and
process information in ways that classical bits cannot, enabling the potential
for quantum speedup in computations.

Aspects of Quantum Computing: Entanglement

A system of two qubits can be described by the state:

α1|00⟩+ α2|01⟩+ α3|10⟩+ α4|11⟩

where

• |01⟩ indicates the first qubit is in state |0⟩ and the second in state |1⟩.

• The coefficients satisfy the normalization condition:
∑4

i=1 |αi|2 = 1.

If the state cannot be expressed as a tensor product of individual qubit
states, the qubits are entangled. This implies that the measurement outcomes
of one qubit are correlated with those of the other, regardless of the distance
separating them.

Examples

• The state
√
2
2 |11⟩+

√
2
2 |10⟩ is separable (not entangled).

• The state
√
2
2 |01⟩+

√
2
2 |10⟩ is entangled.

Consider the two-qubit state:

|ψ⟩ = 1√
2
(|11⟩+ |10⟩)
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This state can be factored as:

|ψ⟩ = |1⟩ ⊗
(

1√
2
(|1⟩+ |0⟩)

)
Here, |1⟩ and 1√

2
(|1⟩+ |0⟩) are individual qubit states, indicating that |ψ⟩ is

separable and not entangled.

In contrast, consider the state:

|ϕ⟩ = 1√
2
(|01⟩+ |10⟩)

Attempting to express |ϕ⟩ as a tensor product:

|ϕ⟩ = (a|0⟩+ b|1⟩)⊗ (c|0⟩+ d|1⟩)

Expanding and equating coefficients, we find no solution for a, b, c, and d that
satisfies the equation, confirming that |ϕ⟩ is entangled.

Quantum Interference

Quantum interference is a phenomenon where quantum amplitudes (proba-
bility waves) combine, leading to constructive or destructive interference. This
concept is fundamental to understanding the behavior of quantum systems.

• Constructive Interference: Occurs when amplitudes add up, increasing
the probability of a particular outcome.

• Destructive Interference: Occurs when amplitudes cancel each other
out, reducing the probability of a particular outcome.

A classic example is the double-slit experiment, where particles like elec-
trons or photons pass through two slits and create an interference pattern on
a screen. The pattern is a result of the wave-like nature of particles interfering
with themselves.

Mathematically, if a quantum state can be represented as:

|ψ⟩ = α|0⟩+ β|1⟩

then the probability of observing the system in state |0⟩ or |1⟩ is given by |α|2
and |β|2, respectively. Interference effects are observed when these probabilities
are influenced by the phase relationship between α and β.

Aspects of Quantum Computing: Interference

Increase the probability of getting the correct answer (and reducing the
probability of the wrong answer).

— 7 — (c) Philippe De Brouwer
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The Qubit

Quantum World + Superposition + Qu. Interference = Qubit

Qubit + Entanglement + Gates = Quantum Processor

The Concept of Quantum Computing

• Physicists measure Expectation Values of Quantum Systems or Observ-
ables:

– Expectation Values of Quantum Observables are:

∗ The average outcome of a measurement repeated many times or

∗ The average outcome of a measurement performed on many
copies of a system over a region of the Multiverse.

– A Boolean Observable: A Quantum Observable whose spectrum con-
tains two values and which can be either or both values simultane-
ously.

∗ Sharp (Same Value for all observers in all Universes)

∗ Non-Sharp (Superposition)

– A QuBit: A physical system, each of whose non-trivial observables
are Boolean.

(c) Philippe De Brouwer — 8 —
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Figure 6: State of the art with D-Wave. Source: dwavesys.com

Aspects of Quantum Computing: Exponential Power

• qubit → 2 quantum states dimensions: α |0⟩+ β |1⟩

• 2 qubits → 4 states: α1 |00⟩+ α2 |01⟩+ α3 |10⟩+ α4 |11⟩

• 3 qubits → 8 quantum state dimensions

• 6 qubits → 64 quantum state dimensions (card deck)

• 10 qubits → 1024 quantum state dimensions (810 listed companies on
WSE)

• 20 qubits → 1.048576× 106 quantum state dimensions (ca. number of all
possible liquid investments)

• 60 qubits → 1.1529215× 1018 states (ca. 1019 grains of sand on earth)

• 175 qubits → 4.7890486× 1052 states (ca. 1050 atoms on earth)

• 275 qubits → 6.0708403 × 1082 quantum states (ca. 1082 atoms in the
visible universe)

3 Existing Quantum Computers

D-Wave

Banking application with D-Wave and Multiverse Computing

IBM

— 9 — (c) Philippe De Brouwer
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Figure 7: A paper about portfolio optimisation with the D-Wave computers.
Source: arxiv.org

Figure 8: A quantum computer today. Source: ibm.com

(c) Philippe De Brouwer — 10 —
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Leading Companies in Quantum Computing

• – IBM:

– Strategy: Superconducting qubits and cloud-based quantum com-
puting services.

– Strengths: Strong research foundation, extensive quantum hard-
ware development, and the IBM Q Experience platform.

– Challenges: Scalability of qubits and maintaining coherence times.

• – Microsoft:

– Strategy: Topological qubits and the Quantum Development Kit
(QDK) for software.

– Strengths: Innovative qubit technology, integration with Azure cloud
services.

– Challenges: Topological qubits are still in the experimental phase.

• – Google:

– Strategy: Research in superconducting qubits and quantum supremacy
experiments.

– Strengths: Strong AI and quantum research teams, achievements
in quantum supremacy.

– Challenges: Transitioning from experimental success to practical
applications.

• – Amazon:

– Strategy: Providing cloud-based quantum computing services through
Amazon Braket.

– Strengths: Leveraging AWS infrastructure, partnerships with vari-
ous quantum hardware providers.

– Challenges: Dependence on third-party hardware, integration with
classical systems.

• – IonQ:

– Strategy: Focus on trapped ion technology for quantum computing.

– Strengths: High-fidelity qubits, partnerships with major tech com-
panies.

— 11 — (c) Philippe De Brouwer
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Figure 9: Sources: finextra.com, goldmansachs.com, ibm.com, and
thequantuminsider.com

– Challenges: Scaling up the number of qubits while maintaining
performance.

• – Rigetti Computing:

– Strategy: Developing superconducting qubits and quantum cloud
services.

– Strengths: Focus on practical applications, integration with classi-
cal computing.

– Challenges: Competing with larger tech companies in the quantum
space.

4 Quantum Computing Achievements in Bank-
ing

Examples of banks’s efforts

Some Real Results

• JPMC and IBM calculated prices for differnt options (European, path
dependent, etc.) by Quantum Amplitude Estimation (similar to Monte-
Carlo simulations)

• Goldman Sachs had a similar PoC in 2021 using QC Ware and IonQ

(c) Philippe De Brouwer — 12 —
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• JPMorgan used Honeywell’s quantum computer for mathematical opera-
tions that involve Fibonacci numbers

• Caixa Bank runs a hybrid framework of quantum and classical computing
to improve credit risk scoring (PoC)

5 Quantum Computing Potential

Use cases in banking

• Optimization:

– portfolio optimization

– collateral optimization

– stress testing

– transaction settlement

– asset pricing

– ATM replenishment

• Machine Learning

– fraud detection

– credit scoring

– synthetic data and data augmentation

• Simulations:

– random number generator

– Monte Carlo, LPDE simulations, etc.

– asset valuation

– ES and VaR calculations

• Encryption:

– quantum key encryption

– quantum currency

– quantum blockchain

— 13 — (c) Philippe De Brouwer
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Resulting Advantages
quadratic to exponential speedup

• better risk management

• lower costs

• greener computing

• better forecasting

• more suitable investments

• etc.

Boston Consulting Group estimates a value of $42B to $67B for financial
institutions

5.1 Stochastic Modelling

5.1.1 Quantum Methods for Monte Carlo-based pricing and risk
analysis

Monte Carlo Integration

QMCI

• Numerical integration by random sampling

• Applicable to high-dimensional problems

• Convergence proportional to 1√
N

In Finance

• Option pricing

• Risk assessment

• Portfolio optimization

• Interest rate modeling

• Credit risk analysis

• Stochastic volatility models

• Capital allocation

Quantum

• Potential Quadratic speedup — requires O(σ/ε) samples (down from
O(σ2/ε2))

• Challenges Error correction, implementation, and hardware reliance

• Realistic? – high potential

(c) Philippe De Brouwer — 14 —
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Figure 10: Papers published in 2024 about QMCI.

Progress for QMCI

5.1.2 Quantum Methods for Differential-Equation-Based Pricing and
Risk Analysis

PDE-Based Pricing & Quantum Methods

PDE Methods

• Transform SDEs → parabolic PDEs (e.g., Black-Scholes)

• Finite-difference methods (FDM) dominate

• Curse of dimensionality persists

In Finance

• Black-Scholes

• American options

• Feynman-Kac PDEs

• Stochastic volatility

• Trinomial trees

Quantum

• QLSAs Solve FDM systems with O(logN) scaling

• Hamiltonian simulation PDEs as Schrödinger-like equations
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• Variational quantum simulation Encode PDEs into parametrized cir-
cuits

• Challenges State prep, error correction, sampling overhead

• Outlook Hybrid workflows for high-dimensional PDEs

5.2 Optimizations

5.2.1 Quantum Methods for Continuous Optimization

Continuous Optimization

Basics

• Real-valued variables (convex/non-convex)

• Classical workhorses: IPMs, MMW, gradient descent

• Non-convex: Heuristics dominate

In Finance

• Portfolio optimization

• Cash-flow management

• Arbitrage detection

• Utility maximization

Quantum

• QBLAS Speed up IPMs/MMW via O(
√
mn) linear algebra

• MMW Quantum Õ(s
√
mγ4) vs. classical Õ(mnsγ4)

• Non-convex Variational circuits for landscapes

• Challenges Conditioning, sampling noise, NISQ coherence

• Outlook Hybrid workflows for high-dimension IPMs

(c) Philippe De Brouwer — 16 —
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5.2.2 Quantum Methods for Discrete Optimization

Discrete Optimization

Basics

• Solutions from discrete sets (e.g., integers)

• Classical methods: B&B, SA, LP relaxations

• NP-hard: Heuristics dominate for scalability

In Finance

• Portfolio optimization

• Crash detection

• Index tracking

• Transaction cost optimization

Quantum

• QWS Quadratic speedup for B&B tree search

• Quantum heuristics QAOA, VQE, VQS for landscapes

• Quantum annealing Tunneling for global minima

• Challenges Parameter tuning, NISQ noise, sampling costs

• Outlook Hybrid quantum-classical workflows near-term

5.2.3 Quantum Methods for Dynamic Programming

Dynamic Programming

Basics

• Sequential decision-making

• Bellman principle: Optimal substructure

• Curse of dimensionality

In Finance

• American options

• CMO structuring

— 17 — (c) Philippe De Brouwer
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• Real options valuation

• Optimal stopping

Quantum

• Quantum DP Reduce state-space exploration

• Algorithms Quantum value/policy iteration

• Applications High-dim CMOs, real options

• Challenges State preparation, NISQ coherence

• Outlook Hybrid quantum-classical DP

5.3 Quantum Methods for Machine Learning

Quantum Machine Learning

Basics

• Classical ML: Pattern recognition, optimization

• Key techniques: Neural nets, kernels, anomaly detection

• Data-driven decision-making

In Finance

• Portfolio optimization

• Anomaly detection

• News sentiment analysis

• Algorithmic trading

Quantum

• QBLAS Accelerate linear algebra (e.g., PCA, SVM)

• Quantum-native QNNs, kernels, Born machines

• Challenges Data loading, NISQ noise, dequantization

• Outlook Hybrid models for finance-specific tasks

(c) Philippe De Brouwer — 18 —
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5.3.1 Quantum Methods for Regression

Regression Techniques

Basics

• Fits functions to numeric data

• Least-squares: Minimize ∥y −Xβ∥2

• GP Regression: Bayesian non-parametric

In Finance

• Asset pricing

• Volatility forecasting

• Risk modeling

• Economic indicators

Quantum

• QLSA Speed up least-squares via O(logN) scaling

• Quantum GPR Sparse kernel matrices with QBLAS

• QNNs Variational circuits for non-linear fits

• Challenges Data encoding, NISQ noise, rank limits

• Outlook Hybrid quantum-classical regression

5.3.2 Quantum Methods for Classification

Classification

Basics

• Assign labels to data points

• Classical methods: SVM, neural nets, k-NN

• Critical for pattern recognition

In Finance

• Fraud detection

• Credit scoring
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• Risk tiering

• Sentiment analysis

Quantum

• QLSA Speed up SVM training via O(logN) scaling

• Quantum kernels High-dim feature maps for separability

• QNNs Variational circuits for non-linear decision boundaries

• Quantum k-NN Grover-like search for nearest neighbors

• Challenges Data encoding, NISQ noise, dequantization

• Outlook Hybrid quantum-classical classifiers for finance

5.3.3 Quantum Methods for Supervised Machine Learning

Quantum Machine Learning: Supervised Learning

Basics

• Classical ML: Pattern recognition, optimization

• Key enablers: Rich datasets, algorithmic advances

• Techniques: Classification, regression, clustering

In Finance

• Fraud detection

• Portfolio optimization

• News sentiment analysis

• Credit scoring

Quantum

• QBLAS Accelerate linear algebra (e.g., PCA, SVM)

• Quantum-native QNNs, Born machines, kernels

• Challenges Data encoding, NISQ noise, dequantization

• Outlook Hybrid models for finance tasks

(c) Philippe De Brouwer — 20 —
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5.3.4 Quantum Methods for Clustering

Clustering

Basics

• Unsupervised grouping of data

• Classical workhorse: Lloyd’s algorithm

• Curse of dimensionality

In Finance

• Portfolio diversification

• Market segmentation

• Anomaly detection

• Index construction

Quantum

• q-means O
(

M
√
k log k
ϵ

)
vs. classical O(kMN)

• QEM Quantum expectation-maximization for GMMs

• Spectral clustering QAOA for graph partitioning

• Challenges NISQ noise, data encoding, hybrid workflows

• Outlook Quantum annealing for high-D finance datasets

5.3.5 Quantum Methods for Generative Learning

Generative Learning

Basics

• Models probability distributions

• Generates synthetic data samples Goal: Learn underlying data patterns
(e.g., stock returns, transaction histories).

In Finance

• Derivative pricingModel complex payoff distributions (e.g., path-dependent
options).

• Risk assessment Generate stress-test scenarios for tail-risk analysis.
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• Anomaly detection Synthesize normal transactions to identify outliers.

Quantum

• QCBMQuantum Circuit Born Machine Encodes distributions via parametrized
quantum states.

• QGANs Quantum Generative Adversarial Networks Quantum genera-
tor/discriminator for complex financial data.

• Boltzmann Machines Quantum sampling for training Leverage quan-
tum annealing for efficient Gibbs sampling.

• Challenges NISQ noise, training stability NISQ = Noisy Intermediate-
Scale Quantum; barren plateaus in gradients.

• Outlook Hybrid workflows for synthetic financial data Near-term focus:
Portfolio stress-testing & pricing exotic derivatives.

5.3.6 Quantum Methods for Feature Extraction

Feature Extraction

Basics

• Preprocess data

• Reduce dimensions Goal: Remove noise/redundancy while preserving
critical information.

• Retain interpretability Tools: PCA, autoencoders, manifold learning.

In Finance

• Risk factor modeling Identify latent market drivers (e.g., Fama-French
factors).

• Algorithmic trading signals Compress high-frequency data into ac-
tionable features.

• Credit scoring Extract default predictors from client histories.

Quantum

• qPCA Exponential speedup for covariance diagonalization Quantum Prin-
cipal Component Analysis via density matrix exponentiation.

• TDA Quantum speedups for persistent homology Topological Data Anal-
ysis (TDA) for detecting market regime shifts.

(c) Philippe De Brouwer — 22 —
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• Quantum annealing Feature selection via QUBO QUBO = Quadratic
Unconstrained Binary Optimization; e.g., sparse portfolio features.

• ChallengesNISQ noise, hybrid workflow integration NISQ = Noisy Intermediate-
Scale Quantum; limited qubit coherence.

• OutlookQuantum-enhanced factor models Near-term focus: Hybrid quantum-
classical risk factor extraction.

5.3.7 Quantum Methods for Reinforcement Learning

Reinforcement Learning

Basics

• Agent learns via trial-and-error

• Maximizes cumulative rewards Core loop: State → action → reward →
policy update.

In Finance

• Algorithmic trading Optimal execution, market-making strategies.

• Portfolio optimization Dynamic asset allocation under uncertainty.

• Risk hedging Derivative pricing and hedging in incomplete markets.

Quantum

• Grover-based RL Amplify high-reward actions Quadratic speedup in
action-space exploration.

• Policy gradients QMCI for gradient estimation Quantum Monte Carlo
Integration for policy updates.

• QNNs Quantum policies for high-dim state spaces Quantum Neural Net-
works for parametrized policies.

• ChallengesNISQ noise, reward function design NISQ = Noisy Intermediate-
Scale Quantum; sparse rewards in finance.

• Outlook Hybrid RL for trading/hedging Near-term focus: Quantum-
enhanced market simulators.
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5.3.8 Dequantized Algorithms

Dequantized Methods

Basics

• Classical algorithms inspired by quantum Dequantization: Mimic quantum-
inspired speedups classically (e.g., recommendation systems).

• Pros: Dimension efficiency

• Cons: Poor error scaling

In Finance

• High-dimensional problems Portfolio optimization, covariance matrix
estimation.

• Low-precision tasks Risk modeling, market regime clustering.

• Inspires classical heuristics E.g., randomized numerical linear algebra.

Impact & Outlook

• Tang’s algorithms Challenge quantum speedup claims E.g., quantum
PCA/Recommendation Systems vs. classical sampling-based methods.

• Areas affected PCA, clustering, SDPs SDPs = Semidefinite Programs;
PCA = Principal Component Analysis.

• Challenges Limited to low-rank/sparse data Struggle with noisy, high-
rank financial datasets.

• Outlook Hybrid quantum-classical workflows Leverage dequantization in-
sights for NISQ-era practicality.

5.4 Encryption

Encryption

Basics

• Secures data via cryptographic protocols

• Symmetric (AES) vs. asymmetric (RSA) Symmetric: Shared key (e.g.,
AES-256). Asymmetric: Public/private key pairs (e.g., RSA, ECC).

• Critical for confidentiality, integrity

In Finance

(c) Philippe De Brouwer — 24 —
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• Securing transactions Encrypt payment gateways, SWIFT messages,
blockchain ledgers.

• Data privacy compliance GDPR, PCI-DSS, SOX regulatory require-
ments.

• Secure communication TLS/SSL for client-bank interactions, API se-
curity.

Quantum

• Threat: Shor’s algorithm breaks RSA/ECC Quantum computers factor
large integers efficiently, compromising asymmetric encryption.

• Post-quantum crypto Lattice-based, hash-based schemes NIST-standardized
algorithms (e.g., CRYSTALS-Kyber, SPHINCS+).

• QKD Quantum Key Distribution (BB84 protocol) Unhackable key ex-
change via quantum entanglement; used in high-frequency trading net-
works.

• Challenges Standardization, legacy system upgrades Migration from RSA/ECC
to post-quantum algorithms.

• OutlookHybrid encryption systems Combine classical + quantum-resistant
crypto during transition.

6 Conclusion

Quantum Finance: Key Takeaways

Transformative Potential

• Breaking Boundaries: Solve intractable problems (e.g., high-dim port-
folio optimization, real-time risk simulations).

• Precision & Speed: Quadratic speedups for Monte Carlo, PDEs, and
machine learning.

• Green Compute: Energy-efficient solutions for data-heavy tasks.

Challenges Ahead

• NISQ-era hardware limits practical scaling.

• Hybrid classical-quantum workflows critical for near-term impact.

• Urgent need for post-quantum cryptography.
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INTERNALInternal  Page 5

Pricing 

Optimisation

HSBC facilitates US$760B of trade 

annually. We aim to develop a POC 

which can provide real-time, flexible 

pricing options.

Collateral 

Optimisation

Develop a hybrid quantum-classical 

POC to optimise allocation of 

collateral in the most cost effective 

way.

QRNG for Monte 

Carlo

Use quantum random number generation 

(QRNG) to improve Monte Carlo 

Simulations in stochastic modelling.

Quantum Key 

Distribution

A method of key exchange which 

is secure against quantum attack.

Aim to set up QKD based 

protocols between two locations. 

Quantum Machine 

Learning

Use Quantum Machine Learning 

algorithms to improve fraud 

detection rate.

Figure 11: Quantum initiatives at HSBC (2023)

HSBC’s Quantum Proofs of Concept

The Road Ahead
2025–2030: Hybrid algorithms for niche finance
tasks 2030+: Fault-tolerant quantum advantage
Beyond: Quantum-native financial ecosystems

• Act Now: Upskill teams, pilot use cases, engage with regulators.

• Think Beyond Speed: Reimagine workflows for quantum-native logic.

Further Reading

• McKinsey Report How Quantum Computing Could Change Financial
Services (2020)

• IBM E-book The Quantum Decade (2021)

• MIT Book Quantum Computing: A Gentle Introduction (Rieffel & Po-
lak)

• Springer Book Quantum Computing for the Quantum Curious (Hughes
et al.)

• E-Books Directory Open-access quantum computing books

• Q&A Forum Quantum Computing StackExchange

• Classiq Insights Technical blog for quantum algorithm design
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Stay updated: quantumcomputingreport.com
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