Quantum Computers in Banking

Philippe J.S. De Brouwer 2022-12-15

Table of Contents

Classical Computers

What Are Quantum Computers

Existing Quantum Computers

Quantum Computing Achievements in Banking

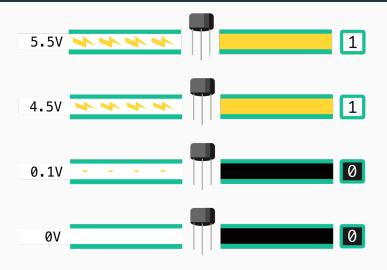
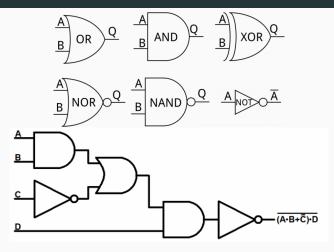
Quantum Computing Potential

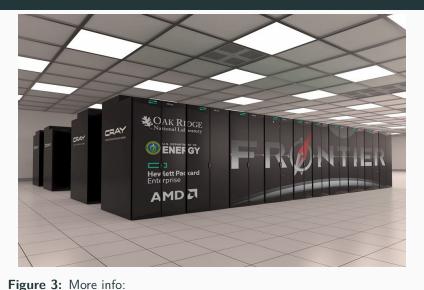
The Route to Quantum for the Banker

Conclusion

Classical Computers

Transistors


Figure 1: We use transistors to create logical states of 1 and 0.

Logical Gates

Figure 2: Those transitors are used to create logical gates that are in turn building blocks for logical circuits.

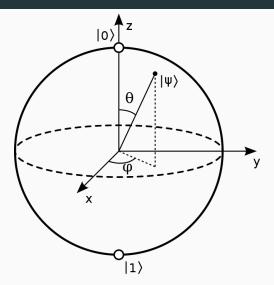
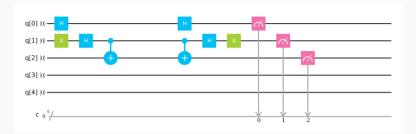
The Fastests Supercomputer: EXA FLOPS

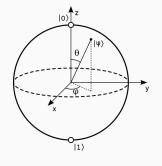
https://en.wikipedia.org/wiki/Frontier_(supercomputer), and https://top500.org/lists/top500/2022/06/

SUPERCOMPUTER FRONTIER - HPE CRAY EX235A, AMD OPTIMIZED 3RD GENERATION EPYC 64C 2GHZ, AMD

Aspect	Details
Site	DOE/SC/Oak Ridge National Laboratory
System URL	https://www.olcf.ornl.gov/frontier/
Manufacturer	HPE
Cores	8,730,112
Processor	AMD Optimized 3rd Generation EPYC 64C 2GHz
Interconnect	Slingshot-11
Installation Year	2021
Performance	
Linpack Performance (Rmax)	1,102.00 PFlop/s
Theoretical Peak (Rpeak)	1,685.65 PFlop/s
Power Consumption	
Power	21,100.00 kW (Submitted)
OS	
Operating System	HPE Cray OS

What Are Quantum Computers


Figure 4: Source: nextplatform.com

Operations

Figure 5: A quantum circuit: quantum gate operations on q-bits. Source: ibm.com

Aspects of Quantum Computing: Superposition

Superposition is a quantum state that is a combination of 2 mutually exclusive states

$$\alpha |0\rangle + \beta |1\rangle$$

Note that if $\alpha>0$ and $\beta>0$ then the qubit's state contains both $|0\rangle$ and $|1\rangle$

Aspects of Quantum Computing: Entanglement

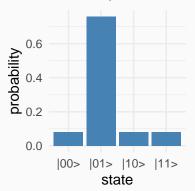
A system of two qubits can be characterized by

$$\alpha_1 |00\rangle + \alpha_2 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle$$

where

- |01
 angle means that the first qubit is 0
 angle and the second |1
 angle
- $\sum_{i=1}^4 |\alpha_i|^2 = 1$

If two or more of α_i are non-zero, and we cannot separate the states, then they are entangled. Knowing one determines the state of the other.


Example

$$\frac{\sqrt{2}}{2}~|11\rangle+\frac{\sqrt{2}}{2}~|10\rangle$$
 is not entangled

$$\frac{\sqrt{2}}{2}$$
 $|01\rangle+\frac{\sqrt{2}}{2}$ $|10\rangle$ is entangled

Aspects of Quantum Computing: Interference

Increase the probability of getting the correct answer (and reducing the probability of the wrong answer).

• qubit ightarrow 2 quantum states dimensions: lpha |0
angle+eta |1
angle

- ullet qubit ightarrow 2 quantum states dimensions: $lpha \, |0
 angle + eta \, |1
 angle$
- $\ \ \, \textbf{2 qubits} \rightarrow \textbf{4 states:} \,\, \alpha_1 \,\, |\textbf{00}\rangle + \alpha_2 \,\, |\textbf{01}\rangle + \alpha_3 \,\, |\textbf{10}\rangle + \alpha_4 \,\, |\textbf{11}\rangle \\$

- qubit ightarrow 2 quantum states dimensions: lpha |0
 angle+eta |1
 angle
- 2 qubits \rightarrow 4 states: $\alpha_1 |00\rangle + \alpha_2 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle$
- $lue{}$ 3 qubits ightarrow 8 quantum state dimensions

- qubit ightarrow 2 quantum states dimensions: $lpha \mid 0
 angle + eta \mid 1
 angle$
- 2 qubits \rightarrow 4 states: α_1 $|00\rangle + \alpha_2$ $|01\rangle + \alpha_3$ $|10\rangle + \alpha_4$ $|11\rangle$
- $lue{}$ 3 qubits ightarrow 8 quantum state dimensions
- 6 qubits → 64 quantum state dimensions (card deck)

- qubit ightarrow 2 quantum states dimensions: $lpha \mid 0
 angle + eta \mid 1
 angle$
- \bullet 2 qubits \to 4 states: α_1 $|00\rangle+\alpha_2$ $|01\rangle+\alpha_3$ $|10\rangle+\alpha_4$ $|11\rangle$
- $lue{}$ 3 qubits ightarrow 8 quantum state dimensions
- 6 qubits → 64 quantum state dimensions (card deck)
- 10 qubits \rightarrow 1024 quantum state dimensions (810 listed companies on WSE)

- qubit ightarrow 2 quantum states dimensions: $lpha \; |0
 angle + eta \; |1
 angle$
- 2 qubits \rightarrow 4 states: α_1 $|00\rangle + \alpha_2$ $|01\rangle + \alpha_3$ $|10\rangle + \alpha_4$ $|11\rangle$
- 3 qubits → 8 quantum state dimensions
- 6 qubits → 64 quantum state dimensions (card deck)
- 10 qubits \rightarrow 1024 quantum state dimensions (810 listed companies on WSE)
- = 20 qubits \to 1.048576 \times 10⁶ quantum state dimensions (ca. number of all possible liquid investments)

- qubit ightarrow 2 quantum states dimensions: $lpha \mid 0
 angle + eta \mid 1
 angle$
- 2 qubits \rightarrow 4 states: $\alpha_1 |00\rangle + \alpha_2 |01\rangle + \alpha_3 |10\rangle + \alpha_4 |11\rangle$
- 3 qubits → 8 quantum state dimensions
- 6 qubits → 64 quantum state dimensions (card deck)
- 10 qubits \rightarrow 1024 quantum state dimensions (810 listed companies on WSE)
- = 20 qubits \to 1.048576 \times 10⁶ quantum state dimensions (ca. number of all possible liquid investments)
- 60 qubits \rightarrow 1.1529215 \times 10¹⁸ states (ca. 10¹⁹ grains of sand on earth)

- qubit ightarrow 2 quantum states dimensions: $lpha \; |0
 angle + eta \; |1
 angle$
- 2 qubits \rightarrow 4 states: α_1 $|00\rangle + \alpha_2$ $|01\rangle + \alpha_3$ $|10\rangle + \alpha_4$ $|11\rangle$
- 3 qubits → 8 quantum state dimensions
- 6 qubits → 64 quantum state dimensions (card deck)
- 10 qubits \rightarrow 1024 quantum state dimensions (810 listed companies on WSE)
- = 20 qubits \to 1.048576 \times 10⁶ quantum state dimensions (ca. number of all possible liquid investments)
- 60 qubits \rightarrow 1.1529215 \times 10¹⁸ states (ca. 10¹⁹ grains of sand on earth)
- 175 qubits \rightarrow 4.7890486 \times 10⁵² states (ca. 10⁵⁰ atoms on earth)

- qubit ightarrow 2 quantum states dimensions: $lpha \; |0
 angle + eta \; |1
 angle$
- 2 qubits \rightarrow 4 states: α_1 $|00\rangle + \alpha_2$ $|01\rangle + \alpha_3$ $|10\rangle + \alpha_4$ $|11\rangle$
- $lue{}$ 3 qubits ightarrow 8 quantum state dimensions
- 6 qubits → 64 quantum state dimensions (card deck)
- 10 qubits \rightarrow 1024 quantum state dimensions (810 listed companies on WSE)
- = 20 qubits \to 1.048576 \times 10⁶ quantum state dimensions (ca. number of all possible liquid investments)
- 60 qubits \rightarrow 1.1529215 \times 10¹⁸ states (ca. 10¹⁹ grains of sand on earth)
- 175 qubits \rightarrow 4.7890486 \times 10⁵² states (ca. 10⁵⁰ atoms on earth)
- 275 qubits \rightarrow 6.0708403 \times 10⁸² quantum states (ca. 10⁸² atoms in the visible universe)

Existing Quantum Computers

D-Wave

5000+ Qubits

A world-class annealing quantum processor design with continued growth in qubits, connectivity, and coherence.

1 Million

Variables

Built to support real-world size applications with up to 1 million variables and 100,000 constraints via our quantum-classical hybrid solver service in Leap.

250+

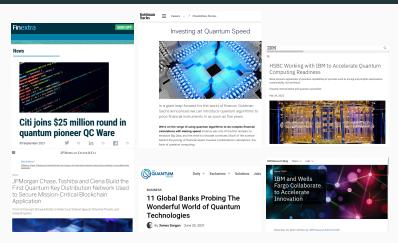
Applications

More than 250 early applications across domains like manufacturing, financial services, and life sciences already exist using D-Wave quantum systems today.

Figure 6: State of the art with D-Wave. Source: dwavesys.com

Banking application with D-Wave and Multiverse Computing

Figure 7: A paper about portfolio optimisation with the D-Wave computers. Source: arxiv.org


Figure 8: A quantum computer today. Source: ibm.com

Quantum Computing Achievements

in Banking

Examples of banks's efforts

Figure 9: Sources: finextra.com, goldmansachs.com, ibm.com, and thequantuminsider.com

 JPMC and IBM calculated prices for differnt options (European, path dependent, etc.) by Quantum Amplitude Estimation (similar to Monte-Carlo simulations)

- JPMC and IBM calculated prices for differnt options (European, path dependent, etc.) by Quantum Amplitude Estimation (similar to Monte-Carlo simulations)
- Goldman Sachs had a similar PoC in 2021 using QC Ware and lonQ

- JPMC and IBM calculated prices for differnt options (European, path dependent, etc.) by Quantum Amplitude Estimation (similar to Monte-Carlo simulations)
- Goldman Sachs had a similar PoC in 2021 using QC Ware and lonQ
- JPMorgan used Honeywell's quantum computer for mathematical operations that involve Fibonacci numbers

- JPMC and IBM calculated prices for differnt options (European, path dependent, etc.) by Quantum Amplitude Estimation (similar to Monte-Carlo simulations)
- Goldman Sachs had a similar PoC in 2021 using QC Ware and lonQ
- JPMorgan used Honeywell's quantum computer for mathematical operations that involve Fibonacci numbers
- Caixa Bank runs a hybrid framework of quantum and classical computing to improve credit risk scoring (PoC)

Quantum Computing Potential

Use cases in banking

Optimization:

Use cases in banking

- Optimization:
 - 1. portfolio optimization

Use cases in banking

- Optimization:
 - 1. portfolio optimization
 - 2. collateral optimization

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring
 - synthetic data and data augmentation

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring
 - synthetic data and data augmentation

Optimization:

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring
 - synthetic data and data augmentation

Optimization:

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring
 - synthetic data and data augmentation

Simulations:

random number generator

Optimization:

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring
 - synthetic data and data augmentation

- random number generator
- Monte Carlo, LPDE simulations, etc.

Optimization:

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring
 - synthetic data and data augmentation

- random number generator
- Monte Carlo, LPDE simulations, etc.
- asset valuation

Optimization:

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring
 - synthetic data and data augmentation

- random number generator
- Monte Carlo, LPDE simulations, etc.
- asset valuation
- ES and VaR calculations

Optimization:

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring
 - synthetic data and data augmentation

- random number generator
- Monte Carlo, LPDE simulations, etc.
- asset valuation
- ES and VaR calculations
- Encryption:

Optimization:

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring
 - synthetic data and data augmentation

Simulations:

- random number generator
- Monte Carlo, LPDE simulations, etc.
- asset valuation
- ES and VaR calculations

Encryption:

quantum key encryption

Optimization:

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring
 - synthetic data and data augmentation

Simulations:

- random number generator
- Monte Carlo, LPDE simulations, etc.
- asset valuation
- ES and VaR calculations

Encryption:

- quantum key encryption
- quantum currency

Optimization:

- 1. portfolio optimization
- 2. collateral optimization
- 3. stress testing
- 4. transaction settlement
- 5. asset pricing
- 6. ATM replenishment
- Machine Learning
 - fraud detection
 - credit scoring
 - synthetic data and data augmentation

Simulations:

- random number generator
- Monte Carlo, LPDE simulations, etc.
- asset valuation
- ES and VaR calculations

Encryption:

- quantum key encryption
- quantum currency
- quantum blockchain

quadratic to exponential speedup

better risk management

quadratic to exponential speedup

- better risk management
- lower costs

quadratic to exponential speedup

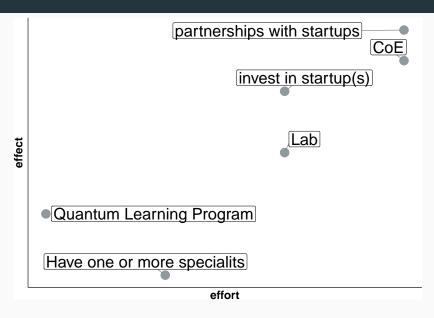
- better risk management
- lower costs
- greener computing

quadratic to exponential speedup

- better risk management
- lower costs
- greener computing
- better forecasting

quadratic to exponential speedup

- better risk management
- lower costs
- greener computing
- better forecasting
- more suitable investment


quadratic to exponential speedup

- better risk management
- lower costs
- greener computing
- better forecasting
- more suitable investment
- etc.

The Route to Quantum for the

Banker

Solutions

Shortcuts to solutions

- Get access to learning, online quantum computers, etc. via the IBM Quantum Accelerator for enterprise
- Use Qiskit to learn programming on quantum computers qiskit.org and their YouTube channel

 Quantum computers are real and the concept works, it is a matter of time before they disrupt the financial system

- Quantum computers are real and the concept works, it is a matter of time before they disrupt the financial system
- They will change how banking works by:

- Quantum computers are real and the concept works, it is a matter of time before they disrupt the financial system
- They will change how banking works by:
 - requiring new ways of encryption (quantum key distribution and quantum resistant algorithms)

- Quantum computers are real and the concept works, it is a matter of time before they disrupt the financial system
- They will change how banking works by:
 - requiring new ways of encryption (quantum key distribution and quantum resistant algorithms)
 - solving optimizations that are not possible now
 (e.g. mean-variance optimisation for large groups of asssets)

- Quantum computers are real and the concept works, it is a matter of time before they disrupt the financial system
- They will change how banking works by:
 - requiring new ways of encryption (quantum key distribution and quantum resistant algorithms)
 - solving optimizations that are not possible now
 (e.g. mean-variance optimisation for large groups of asssets)
 - improved accuracy of risk calculations

- Quantum computers are real and the concept works, it is a matter of time before they disrupt the financial system
- They will change how banking works by:
 - requiring new ways of encryption (quantum key distribution and quantum resistant algorithms)
 - solving optimizations that are not possible now
 (e.g. mean-variance optimisation for large groups of asssets)
 - improved accuracy of risk calculations
 - improved deep learning

- Quantum computers are real and the concept works, it is a matter of time before they disrupt the financial system
- They will change how banking works by:
 - requiring new ways of encryption (quantum key distribution and quantum resistant algorithms)
 - solving optimizations that are not possible now
 (e.g. mean-variance optimisation for large groups of asssets)
 - improved accuracy of risk calculations
 - improved deep learning
 - improving computational speed

- Quantum computers are real and the concept works, it is a matter of time before they disrupt the financial system
- They will change how banking works by:
 - requiring new ways of encryption (quantum key distribution and quantum resistant algorithms)
 - solving optimizations that are not possible now
 (e.g. mean-variance optimisation for large groups of asssets)
 - improved accuracy of risk calculations
 - improved deep learning
 - improving computational speed
 - providing a greener solution to computational intensive tasks

Further Reading

- McKinsey, 2020, "How quantum computing could change financial services" – download
- IBM, "The Quantum Decade" (e-book) download
- E. Rieffel and W Polak, MIT Press, "Quantum Computing, a Gentle Introduction" – download
- Quantum Computing for the Quantum Curious, C. Hughes et al., Springer – download
- a list of books: download