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ABSTRACT. The study of the different patterns which appear beyond the electro-
hydrodynamic instability of nematic liquid crystals is performed in the framework
of a dynamical model of the Proctor-Sivashinsky type. This model describes the
experimentally observed transitions between rolls, zig-zag and bimodal structures.

1. Introduction

In the recent years, there has been much interest for pattern forming instabilities
in nematic liquid crystals, both experimentally [1-2] and theoretically [3-6]. It
is now well known that a thin layer of nematic liquid crystal, submitted to an
oscillating electrical field of increasing amplitude, presents a sequence of transitions
between different types of structures ending in complex spatio-temporal regimes
[1-5]. Usually, the following structures are successively observed : straight rolls,
undulated rolls, oblique or zig-zag rolls, bimodal structures and finally states of
high spatio-temporal complexity.

The theoretical description of these structures and of the electrohydrodynamic
convection in general is extremely difficult, due to the complexity of the underlying
nemato-electrohydrodynamics, and the time dependence of the external forcing.
[t has however been possible to perform the linear stability analysis of the ho-
mogeneous steady state and to compute the threshold for pattern formation, the
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neutral surface and the linear growth rate of the unstable modes [5], but a sys-
tematic derivation of the nonlinear terms of the correponding amplitude equations
from the underlying dynamics is not available yet. Amplitude equations, based
on symmetry arguments, have nevertheless been derived for each type of structure
and they satisfactorily describe various aspects of electrically driven liquid crys-
tals. Despite their interest, these equations are not able to decribe the transitions
between the different structures, nor their relative stability. Hence it would be
interesting to rely on a reduced dynamical model which encompasses the various
instability thresholds and plays here the role of the Swift-Hohenberg equation for
Rayleigh-Bénard convection [7].

It is why we propose to describe the behavior of nematic liquid crystals near
the electrohydrodynamic instability with a reduced dynamical model for an order
parameterlike variable which takes into account a minimal set of basic elements,
namely the intrinsic anisotropy of the system, which is known to affect the se-
lection and stability of spatial patterns [8], and the gradient dependence of the
nonlinear couplings. This model reproduces the sequence of observed patterns but
also suggests that bimodal structures should be stable in a closed domain of the
parameter space. The fact that the boundary of this domain corresponds to a
phase instability is consistent with the observed defect mediated disordered states
that appear for increasing field intensities.

2. The model

Following the linear stability analysis and the near threshold description performed
by Bodenschatz et al. for electrohydrodynamic convection in nematics [5], the
linear growth rate of the order parameterlike variable may be written, near the
instability threshold, as

— {07 + 507) + [1 + 82 + 871 + 270207 + 70} } (1)

or

{ela +592] — [1 — 2 — ¢})* — 2n¢2q? — 7q}} (2)

in Fourier space. ¢ is the reduced distance to threshold (V? — V?)/V? where V
is the amplitude of the applied voltage and V. its threshold value. s, 5 and
are positive materials parameters reflecting the anisotropy of the system, and the
critical wavenumber has been scaled to one. The x axis being the easy axis, s is
larger than one, and, in the following, we will consider s = 2, n = 0.25 and r = 1.5,
values that are consistent with the analysis of Bodenschatz et al. [5]

The corresponding marginal stability surface is thus given by (fig.1)

-’ J b 2 4
1 [1 qf] + ?nq,qr + 7q, (3)
92 + sq? :
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Figure 1 : Contour plot of the marginal stability surface and
marginal stability curve for different wavevector orientations in
the case of the linear growth rate given in (1).
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and the fastest growing mode corresponds to

€
q§x=l+§ ) g§y=0 (4)
for 0 < € < ;= = 0.667, and
le(s—-l—n}—ﬁn le(s —1—9)—2q ,_
2 =1 2 g I
for € > - = 0.667
Hence the inear part of the dynamics provides a first pattern selectlon mecha-
nism towards normal (¢ < —3— = 0.667) or oblique rolls (¢ > = = 0.667).

Of course, the eventual stablllsamon of these structures depends on the nonlinear
terms of the dynamics. The simplest nonlinearities compatible with the amplitude
equations derived in [5] correspond to the cubic scalar nonlinearity of the Swift-
Hohenberg equation, ¢%, where o is the order parameterlike variable. However,

this term is not able to stabilize bimodal structures [9] and one has to introduce

gradient dependent nonlinearities. On performing a systematic expansion in the
gradlents, the first nonlinear terms able to stabilize bimodal structure are of the
form

Guv Oy [{3;1 a)(8, "')2] (6)

Let us note that in the case of the elliptically sheared nematics, where similar
pattern sequences are observed, the introduction of a potential version of these
terms, gV.(Vo|Ve|?), led to a quantitative description of the pattern formation
phenomena [10]. Hence, since this term seems to capture the basics of the non-
linear part of the dynamics, we will also use it here and test its relevance to the
description of the experimental observations. The proposed kinetic equation for
the order parameterlike variable o is thus, in scaled units :

do = — {07 + s07] + [L + 02 + 8% + 200202 + 10:} o + V.(Va|Va) (7)
3, Pattern Selection and Stability
3.1. NORMAL ROLLS
Since the first structure to bifurcate from the electrohydrodynamic instability cor-

reponds to normal rolls (i.e. with wavevector parallel to the easy axis 0x), let us

derive their amplitude equation and study their stability. The normal rolls are
defined by :

o(z,y,1) = Alz,y,1)e'® + A(s,y,1)e” ' (8)
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where A(z,y,1) is the complex amplitude of the structure and may be slowly
varying in space and time. On introducing this expression in the kinetic equation
(7) and neglecting rapidly varying contributions and short scale effects, one obtains
the following amplitude equation :

8 A = [eq® — (g — 1)%]A — 2igle — 2(¢® — 1)]0: A + [2(3¢° — 1) — €07, A
+[2(¢° — 1) + 2nq® — 5102, A — 3¢  A|A[® + [12ig°0; A + 4970, A
+2¢°V?A)|A]® - [¢* VA + 24707, A] A7 (9)

This equation admits uniform steady states defined by Ag = Roexprdo, with
R? = [eq® — (g% — 1)%]/3¢* and ¢¢ arbitrary. As usual, since these patterns appear
via a continuous symmetry breaking, one may expect a diffusive behavior of their
phase perturbations. Effectively, on using the standard derivation procedure, one
obtains the following phase dynamics :

8¢ = D,833¢+D,3§,¢ (10)
where
p eI (g 18 +44 59~ %) (1)
L5 eg® — (g% — 1)
and
12
s =it =9 - + (1 +29)¢° (12)
Hence, there is an Eckhaus instability at
~ 2 _ 946 B
i 5 — 6g q° + 3q (13)
3¢ + ¢°
and a zig-zag instability at
= 1—(1+2n)q¢* (14)
{1 =g

The resulting stability domain of normal rolls is shown in figure 2. It shows,
for example, that, on increasing € for a roll pattern locked in the first unstable
wavevector (¢ = 1.), the first instability occurs at € = 0.5 and is of the zig-zag
type, while for normal rolls with the optimal wavevector, the first instability occurs
at ¢ = 1.68 and is of the Eckhaus type . In any case, since the phase stability
limits of normal rolls form a closed domain, this pattern always becomes unstable
on increasing €.
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Figure 2 : Stability diagram for normal roll solutions of the am-
plitude equations (9).

3.2. UNDULATED ROLLS

Near a phase diffusive instability, since the diffusion coefficients become small
or even negative, one has to include higher order space derivatives in the phase
dynamics. For the normal rolls described in the preceeding section, one obtains :

514[’ = Dsafx‘iﬁ = D'Faffrgl’ T 3:_1_.::35! = 2(1 + q)a:-‘l'??’qb T (1 & T)S;'l?fé (15)

One sees on the diagram displayed in figure 2 that the phase instability that a
roll pattern encounters on increasing ¢ is of the zig-zag type. Hence the system
will develope phase pertubations of wavevectors k perpendicular to the x axis and
of linear evolution given by :

Bepx = —[Dyk* + (L + 1)k s (186)

and, for D, < 0, there exists a whole band of unstable wavevectors k, the most
unstable corresponding to
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2 (17)

i

In the immediate neighbourhoog of the instability, the system will thus develope
transient undulated rolls which are intermediate states between the normal rolls
and the new bifurcating structure corresponding to oblique rolls.

3.3. OBLIQUE ROLLS

Above the zig-zag instability of normal rolls, one expects structures with non van-
ishing y components of their wavevectors. Since unstable modes with wavevectors
¢ =q:1: +¢,1, and g2 = ¢z 1; — ¢, I, (¢? = ¢2) have the same linear growth rate,
the order parameterlike variable may be written as :

o(z,y,1) =A(£,y,i)e"(?*‘+‘i’??j T A(m’yji)e“t(q‘ni-i-q'y)
i B(‘T"!yli)ei(q':_qn) + B(m’y’-‘)e—f(q,:—q'?) (18]

The corresponding amplitude equations are given by :

A =[e(g: +5q2) — (¢° —1)* — 2n¢Zq? — 7q}A
— gz [e +2 — 2¢2 — 2(1+ n)q}]0; A
— 2ig,[es +2 - 2(1 +n)gZ — 2(1 + 'r)q 16, A
+[4¢2 + 2(¢* — 1) + 2nq] — €]0Z, A+ 8(1 + n)g-q,82, A
= [4q§ +2(¢* — 1)+ 254 + 6rq§ = 63]6”
— 391|AIP A — 2[qfe? + 2(012)°)|BIF A — [gV? A + 241.V(§1 . V A)) A7
+[12:2(§1V A + 4V(§1.VA) + 2¢? V2 4] A
+2[g3 V2 A + 2163 (¢1.V A) + 224162 + 62.V) (2. V A)] | BJ?
+2[(¢? + 241-@2)(¢1 + §2)-VB + 2¢1.V(¢2.VB) + (¢1.4:) V* B]AB
+2[i(¢? + 241-¢2)(61 — §2)-VB — 2¢1.V(§2.VB) — (¢1.4:) V*B]AB o
19a
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8B = [e(¢Z + s¢2) — (¢* — 1)° — 2ngZq; — 74,]B
— 2ig-[e + 2 — 2¢ — 2(1 + 1)g;]0: B
+ 2igy[es + 2 — 2(1 + r_:r}q: —2(1+ T)qy]a B
+[4¢2 +2(¢* — 1) + 2ng] — €]02.B — 8(1 + 1)g-4,95, B
- {4@3 +2(¢% — 1) + 29¢2 + 61’93 - es]é’fv
== 392 |BI*B ['5!'1 9'2 + 2(§1f2]2 |*"1|2 = [qg'cﬂﬁ * 2@'2.‘3"[§’2.€’B)]B2
+ [12i¢2(2V B + 4V (. VB) + 2¢2V?B]|BJ?
+2[g3V?B + 2i¢2(¢:.VB) + 2(241.&2 + ¢2.V)(%.VB)]|A]?
+2[i(q} + 2¢1.42)(d1 + @2)-VA + 241.V(§2.V A) + (¢1.¢2) VP A]BA
+2Li(q} +241.32)(4 — ). VA - 2§1.V(§%.VA) — (§1.¢:)V* A]AB
(19b)
These equations admit stationary solutions corresponding to patterns of uniform

amplitudes which may be of
- the oblique roll type :

A=Rpexpi¢g , B=0 , or B=Rgezxpi¢gp , A=0
with

E(gs s sq'y) ( s 1) s 23’]'1, Qg TQ:
3q}

R = v g = cst (20)

- the bimodal type :

A = Spexpsgpo , B = Spexpryp
with

(9.:: = Sq?} e Ql 2 1)2 = 2’?9: (Iy = Tq'y
3¢t + 2[gf 93 + 2(¢142)7] ’

The oblique rolls are stable for 3¢f < 2[¢fq? + 2(4142)?] or cos?# > 1/4 | 8
being the angle between the wavevectors g; and g2. Bimodal structures are stable
for 3qf > 2[gfq% + 2(d142)?] or cos?8 < 1/4 . Hence, since g, has a tendency to
increase and g, to decrease for increasing ¢ (cf. eq. (5) ), we expect first the
formation of zig-zag structures corresponding to alternate domains of oblique rolls
of wavevectors g; and g2 . The phase dynamics and stability domains of these
structures may be determined as usual [11]. However, when the angle between g,
and ¢ exceeds x/3, a transition to bimodal structures should occur.

55 =

$o, Yo = cst (21)
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3.4. BIMODAL STRUCTURES

As seen in the preceeding section, uniform bimodal structures are stable when their
underlying wavevectors ¢; and gz make an angle 6 such that /3 < § < 2x/3. Since
this angle increases with ¢, the expected final structure corresponds to squares built
on orthogonal wavevectors symmetric versus the easy axis 0x. The phase dynamics
of this pattern may be derived along the usual lines [11], and one finds :

01¢ =Dxx 0%k x$+ Dxy kv + Dyy 0y ¢
+ D x0%x¥ + Dxy 0%y + Diy0iyy
O =Dyy 8% x¥ + DxyO%y¥ + Dxx 0%y ¢
+ Dyy0%x ¢+ Diy0iyd+ Dix 0%y é (22)

where X = (z +y)/vV2 and Y = (z — y)/v2. The diffusion coefficients are
analytical functions of the various parameters of the dynamics and have been
explicitely computed [11]. It turns out that the square pattern is only stable in a
closed domain as shown in figure 3.

Hence, the square patterns are destabilized via a phase instability which induces
the spontaneous nucleation of topological defect. As a result, they should naturally
experience the experimentally observed defect mediated disorganization [12]. Fur-
thermore, non variational contributions to the dynamics, which have been omitted
in the present description, should strongly influence defect motion and take care
of some aspects of the spatio-temporal complexity observed in this system [13]

4, Conclusions

We showed that the pattern formation phenomena that occur in the electrohydro-
dynamic instability of nematics can be described qualitatively with a reduced dy-
namical which takes essentially into account the intrinsic anisotropy of the system
and the gradient dependence of the nonlinear couplings. This model provides an
alternative to the too complex nematohydrodynamics for the study of the generic
properties of pattern formation in anisotropic systems. The sequence of patterns,
going from rolls to bimodal structures, results from the competition between lin-
ear anisotropy effects and the structure of the nonlinear couplings. Furthermore,
it appears that the latter are responsible of the fact that bimodal structures are
only stable in a closed domain of the parameter space. This is consistent with
the defect mediated disorganization of the system which is observed for increasing
field intensity. Of course, a quantitative descritpion of these phenomena requires
the numerical analysis of the model, the fitting of some of its parameters, and
eventually the introduction of non variational effects. We nevertheless think that
the understanding of pattern formation in liquid crystal instabilities could benefit
much from this description and that the proposed model could play here the same
role that the Swift-Hohenberg equation played for Rayleigh-Bénard convection.
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Figure 3 : Stability diagram for square patterns solutions of the
amplitude equations (9) for s = 2, n = 0.25 and 7 = 1.5.

Acknowledgments. D.W. is grateful to the Fundacion Andes (Chile) for its

support during the realization of this work.

References

1. AJoets and R.Ribotta, J.Physique 47 (1986), p. 595.

2. S.Kai and W.Zimmerman, Prog.Theor Phys. 99 (1989), p. 458.

3. E.Dubois-Violette, P.G.De Gennes and O.Parodi, J.Physique 32 (1971), p.
305.

4. W.Pesch and L.Kramer, Z.Physik B63 (1986), p. 121.

5. E.Bodenschatz, W.Zimmerman and L.Kramer, J.Physique 49 (1988), p. 1875.

6. D.Walgraef, in “Nematics,” J.M.Coron et al., eds., Kluwer, Dordrecht, 1991,
p. 391.

7. J.Swift and P.C.Hohenberg, Phys.Rev. A15 (1977), p. 319.

8. D.Walgraef and C.Schiller, Physica D27 (1987), p. 423.

0. D.Walgraef, Solid state Phenomena 3-4 (1988), p. 77.



245

10. E.Guazzelli, G.Dewel, P.Borckmans and D.Walgraef, Physica D35 (1989), p.
220.

11. P.De Brouwer, “Pattern Formation in Nematics subjected to an Oscillating
Electrical Field,” Licenciaat Thesis, Vrije Universiteit Brussel, 1991.

12. J.Toner and D.Nelson, Phys.Rev. B23 (1981), p. 316.

13. D.Walgraef, Pattern Evolution in Extended Nonequilibrium Systems, preprint,
Free University of Brussels, 1992.



