
THE BIG-R BOOK
FROM DATA SCIENCE TO LEARNING MACHINES AND BIG DATA

— PART 02—

Dr. Philippe J.S. De Brouwer
last compiled: September 1, 2021
Version 0.1.1

(c) 2021 Philippe J.S. De Brouwer – distribution allowed by John Wiley & Sons, Inc.

THE BIG R-BOOK:
From Data Science to Big Data and Learning

Machines

�— PART 02: Starting with R and Elements
of Statistics —�

(c) 2021 by Philippe J.S. De Brouwer – distribution allowed by John Wiley & Sons, Inc.

These slides are to be used in with the book – for best experience, teachers will read the book before using the slides and students have access to the
book and the code.

© Dr. Philippe J.S. De Brouwer 2/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics
↓

chapter 4:

The Basics of R

© Dr. Philippe J.S. De Brouwer 3/256

R in a Nutshell

Essentially, R is . . .

• a programming language built for statistical analysis, graphics representation and reporting;
• an interpreted computer language which allows branching, looping, modular programming as well as object

and functional oriented programming features.

© Dr. Philippe J.S. De Brouwer 4/256

The Main Features of R

R offers its users. . .

• integration with the procedures written in the C, C++, .Net, Python, or FORTRAN languages for efficiency;
• zero purchase cost (available under the GNU General Public License), and pre-compiled binary versions are

provided for various operating systems like Linux, Windows, and Mac;
• simplicity and effectiveness;
• a free and open environment;
• an effective data handling and storage facility;
• a suite of operators for calculations on arrays, lists, vectors, and matrices;
• a large, coherent, and integrated collection of tools for data analysis;
• graphical facilities for data analysis and display either directly at the computer or printing;
• a supportive on-line community;
• the ability for you to stand on the shoulders of giants (e.g. by using libraries).

R is arguably the most widely used statistics programming language and is used from universities to business
applications, while it still gains rapidly in popularity.

© Dr. Philippe J.S. De Brouwer 5/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 4: The Basics of R

↓

section 1:

Getting Started with R

© Dr. Philippe J.S. De Brouwer 6/256

Getting started

• You need a working installation of R on your computer.
• R is available for Mac, Linux, and Windows from https://cran.r-project.org

• To start R, open the command line and type R (followed by enter).
• You should then get the command line prompt of R. It is of course also possible to use a graphical interface

such as RStudio (see https://www.rstudio.com).

Hint – Using R Online

It is also possible to use R online:
• https://www.tutorialspoint.com/execute_r_online.php

• http://www.r-fiddle.org

© Dr. Philippe J.S. De Brouwer 7/256

https://cran.r-project.org
https://www.rstudio.com
https://www.tutorialspoint.com/execute_r_online.php
http://www.r-fiddle.org

RStudio

For the user, who is not familiar with the command line, it is highly recommendable to use an IDE, such as
RStudio (see https://www.rstudio.com). Later on

we will see that RStudio has some unique advantages over the R-console in store, that will convince even the
most traditional command-line-users.

Whether you use standard R or MRAN, using RStudio will enhance your performance and help you to be more
productive. Rstudio is an integrated development environment (IDE) for R and provides a console, editor with
syntax-highlighting, a window to show plots and some workspace management.

© Dr. Philippe J.S. De Brouwer 8/256

https://www.rstudio.com

Basic arithmetic

The basic operators work as one would expect. Simply type in the R terminal 2+3 followed by ENTER and R will
immediately display the result.
Addition:

2 + 3

[1] 5

Product:

2 * 3

[1] 6

Power:

2**3

[1] 8

2^3

[1] 8

Logic:

2 < 3

[1] TRUE

x <- c(1,3,4,3)

x.mean <- mean(x)

x.mean

[1] 2.75

y <- c(2,3,5,1)

x+y

[1] 3 6 9 4

© Dr. Philippe J.S. De Brouwer 9/256

the scan() function

To create a variable x via an editor, type:

x <- scan()

This code will start an interface that invites you to type all values of the vector one by one. In order to get back to
the command prompt: type enter without typing a number (ie. leave one empty to end).

© Dr. Philippe J.S. De Brouwer 10/256

Editing variables

To modify an existing variable, one can use the edit() function

edit(x)

© Dr. Philippe J.S. De Brouwer 11/256

Batch mode

1 create a file test.R

2 add the content print("Hello World")

3 run the command line Rscript test.R

4 now, open R and run the command source("test.R")

5 add in the file
my_function <- function(a,b)

{

a + b

}

6 now repeat step 4 and run my_function(4,5)

© Dr. Philippe J.S. De Brouwer 12/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 4: The Basics of R

↓

section 2:

Variables

© Dr. Philippe J.S. De Brouwer 13/256

Valid Variables

In R, variables

• can contain letters as well as "_" (underscore) and "." (dot), and
• variables must start with a letter (that can be preceded with a dot).

For example, my_var.1 and my.Cvar are valid variables, but _myVar, my%var and 1.var are not acceptable.

© Dr. Philippe J.S. De Brouwer 14/256

Assignment

Assignment can be made left or right:

x.1 is assigned the value 5:

x.1 <- 5

The result of x.1 + 3 is stored in .x:

x.1 + 3 -> .x

Show the result:

print(.x)

[1] 8

© Dr. Philippe J.S. De Brouwer 15/256

Variable Management

List all variables:

ls() # hidden variable starts with dot

ls(all.names = TRUE) # shows all

Remove a variable:

rm(x.1) # removes the variable x.1

ls() # x.1 is not there any more

rm(list = ls()) # removes all variables

ls()

© Dr. Philippe J.S. De Brouwer 16/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 4: The Basics of R

↓

section 3:

Data Types

© Dr. Philippe J.S. De Brouwer 17/256

Base Data Types i

There is no need to declare variables explicitly and tell R what type the variable will be before using it. R will
assign them a class whenever this is needed and even change the type when our code implies a change.

© Dr. Philippe J.S. De Brouwer 18/256

Base Data Types ii

Booleans can be TRUE or FALSE:

x <- TRUE

class(x)

[1] "logical"

Integers use the letter L (for Long integer):

x <- 5L

class(x)

[1] "integer"

Decimal numbers, are referred to as 'numeric':

x <- 5.135

class(x)

[1] "numeric"

Complex numbers use the letter i (without multiplication sign):

x <- 2.2 + 3.2i

class(x)

[1] "complex"

Strings are called 'character':

x <- "test"

class(x)

[1] "character"

© Dr. Philippe J.S. De Brouwer 19/256

Dates

The function as.Data coerces its argument to a date:

d <- as.Date(c("1852-05-12", "1914-11-5", "2015-05-01"))

Dates will work as expected:

d_recent <- subset(d, d > as.Date("2005-01-01"))

print(d_recent)

[1] "2015-05-01"

© Dr. Philippe J.S. De Brouwer 20/256

Composed Data Types

Simply put, vectors are lists of objects that are all of the same type. They can be the result of a calculation or be
declared with the function c(). The following code generates two vectors of different types.

x <- c(2, 2.5, 4, 6)

y <- c("apple", "pear")

class(x)

[1] "numeric"

class(y)

[1] "character"

© Dr. Philippe J.S. De Brouwer 21/256

Accessing Elements of a Vector

Create v as a vector of the numbes one to 5:

v <- c(1:5)

Access elements via indexing:

v[2]

[1] 2

v[c(1,5)]

[1] 1 5

Access via TRUE/FALSE:

v[c(TRUE,TRUE,FALSE,FALSE,TRUE)]

[1] 1 2 5

Access elements via names:

v <- c("pear" = "green", "banana" = "yellow", "coconut" = "brown")

v

pear banana coconut

"green" "yellow" "brown"

v["banana"]

banana

"yellow"

Leave out certain elements:

v[c(-2,-3)]

pear

"green"
© Dr. Philippe J.S. De Brouwer 22/256

Vector Arithmetic

The standard behaviour for vector arithmetic in R is element per element. With “standard” we mean operators
that do not appear between percentage signs (such as %.% for example).

Define two vectors:

v1 <- c(1,2,3)

v2 <- c(4,5,6)

Standard arithmetic:

v1 + v2

[1] 5 7 9

v1 - v2

[1] -3 -3 -3

v1 * v2

[1] 4 10 18

© Dr. Philippe J.S. De Brouwer 23/256

Vector Recycling

Define a short and long vector:

v1 <- c(1, 2, 3, 4, 5)

v2 <- c(1, 2)

Note that R 'recycles' v2 to match the length of v1:

v1 + v2

[1] 2 4 4 6 6

© Dr. Philippe J.S. De Brouwer 24/256

Vector Sorting

To sort a vector, we can use the function sort().

Example 1:

v1 <- c(1, -4, 2, 0, pi)

sort(v1)

[1] -4.000000 0.000000 1.000000 2.000000 3.141593

Example 2: To make sorting meaningful, all variables are coerced to

the most complex type:

v1 <- c(1:3, 2 + 2i)

sort(v1)

[1] 1+0i 2+0i 2+2i 3+0i

Sorting is per increasing numerical or alphabetical order:

v3 <- c("January", "February", "March", "April")

sort(v3)

[1] "April" "February" "January" "March"

Sort order can be reversed:

sort(v3, decreasing = TRUE)

[1] "March" "January" "February" "April"

© Dr. Philippe J.S. De Brouwer 25/256

Exercise

Question #1 Temperature conversion

The time series nottem (from the package “datasets” that is usually loaded when R starts) contains the
temperatures in Notthingham from 1920 to 1939 in Fahrenheit. Create a new object that contains a list of
all temperatures in Celsius.

Hint – Addressing the object nottem

Note that nottem is a time series object
and not a matrix. Its elements are addressed with nottam[n] where n is between 1 and
length(nottam). However, when printed it will look like a matrix with months in the columns
and years in the rows. This is because the print-function will use functionality specific to the time
series object.a

Remember that T(C) = 5
9 (T(F)− 32).

aThis behaviour is caused by the dispatcher-function implementation of an object-oriented programming model. To
understand how this works and what it means, we refer to Section ?? “??” on page ??.

© Dr. Philippe J.S. De Brouwer 26/256

Matrices

A matrix is in two-dimensional data set where all elements are of the same type. The matrix() function offers a
convenient way to define it:

Create a matrix:

M <- matrix(c(1:6), nrow = 2, ncol = 3, byrow = TRUE)

Show it on the screen:

print(M)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

M <- matrix(c(1:6), nrow = 2, ncol = 3, byrow = FALSE)

print(M)

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

© Dr. Philippe J.S. De Brouwer 27/256

Naming Rows and Columns

While in general naming rows and/or columns is more relevant for datasets than matrices it is possible to work
with matrices to store data if it only contains one type of variable.

Store the names in a vector:

row_names = c("row1", "row2", "row3", "row4")

col_names = c("col1", "col2", "col3")

Create the matrix:

M <- matrix(c(10:21), nrow = 4, byrow = TRUE,

dimnames = list(row_names, col_names))

Display the result:

print(M)

col1 col2 col3

row1 10 11 12

row2 13 14 15

row3 16 17 18

row4 19 20 21

© Dr. Philippe J.S. De Brouwer 28/256

Accessing Data in a Matrix

M <- matrix(c(10:21), nrow = 4, byrow = TRUE)

M

[,1] [,2] [,3]

[1,] 10 11 12

[2,] 13 14 15

[3,] 16 17 18

[4,] 19 20 21

Access one element:

M[1,2]

[1] 11

The second row:

M[2,]

[1] 13 14 15

The second column:

M[,2]

[1] 11 14 17 20

Row 1 and 3 only:

M[c(1, 3),]

[,1] [,2] [,3]

[1,] 10 11 12

[2,] 16 17 18

Row 2 to 3 with column 3 to 1:

M[2:3, 3:1]

[,1] [,2] [,3]

[1,] 15 14 13

[2,] 18 17 16

© Dr. Philippe J.S. De Brouwer 29/256

Matrix Arithmetic

Basic arithmetic on matrices works element by element:

M1 <- matrix(c(10:21), nrow = 4, byrow = TRUE)

M2 <- matrix(c(0:11), nrow = 4, byrow = TRUE)

M1 + M2

[,1] [,2] [,3]

[1,] 10 12 14

[2,] 16 18 20

[3,] 22 24 26

[4,] 28 30 32

M1 * M2

[,1] [,2] [,3]

[1,] 0 11 24

[2,] 39 56 75

[3,] 96 119 144

[4,] 171 200 231

M1 / M2

[,1] [,2] [,3]

[1,] Inf 11.000000 6.000000

[2,] 4.333333 3.500000 3.000000

[3,] 2.666667 2.428571 2.250000

[4,] 2.111111 2.000000 1.909091

© Dr. Philippe J.S. De Brouwer 30/256

Question #2 Dot product

Write a function for the dot-product for matrices. Add also some security checks. Finally, compare your
results with the “%*%-operator.”

The dot-product is pre-defined via the %*% opeartor. Note that the function t() creates the transposed vector or
matrix.
Example of the dot-product:

a <- c(1:3)

a %*% a

[,1]

[1,] 14

a %*% t(a)

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 2 4 6

[3,] 3 6 9

t(a) %*% a

[,1]

[1,] 14

Define A:

A <- matrix(0:8, nrow = 3, byrow = TRUE)

Test products:

A %*% a

[,1]

[1,] 8

[2,] 26

[3,] 44

A %*% t(a) # this is bound to fail!

Error in A %*% t(a): non-conformable arguments

A %*% A

[,1] [,2] [,3]

[1,] 15 18 21

[2,] 42 54 66

[3,] 69 90 111

There are also other operations possible on matrices. For example the quotient works as follows:
A %/% A

[,1] [,2] [,3]

[1,] NA 1 1

[2,] 1 1 1

[3,] 1 1 1

Note – Percentage signs point towards matrix operations

Note that matrices will accept both normal operators and specific matrix operators.

Note the difference between the normal product:

A * A

[,1] [,2] [,3]

[1,] 0 1 4

[2,] 9 16 25

[3,] 36 49 64

and the matrix product %*%:

A %*% A

[,1] [,2] [,3]

[1,] 15 18 21

[2,] 42 54 66

[3,] 69 90 111

However, there is -of course- only one sum:

A + A

[,1] [,2] [,3]

[1,] 0 2 4

[2,] 6 8 10

[3,] 12 14 16

Note that the quotients yield almost the same:

A %/% A

[,1] [,2] [,3]

[1,] NA 1 1

[2,] 1 1 1

[3,] 1 1 1

A / A

[,1] [,2] [,3]

[1,] NaN 1 1

[2,] 1 1 1

[3,] 1 1 1

The same hold for quotient and other operations.

Warning – R consistently works element by element

Note that while exp(A), for example, is well defined for a matrix as the sum of the series:

exp(A) =
+∞∑
n=0

An/n!

R will resort to calculating the exp() element by element!
Using the same matrix A as in the aforementioned code:

This is the matrix A:

A

[,1] [,2] [,3]

[1,] 0 1 2

[2,] 3 4 5

[3,] 6 7 8

The exponential of A:

exp(A)

[,1] [,2] [,3]

[1,] 1.00000 2.718282 7.389056

[2,] 20.08554 54.598150 148.413159

[3,] 403.42879 1096.633158 2980.957987

The same holds for all other functions of base R:

The natural logarithm

log(A)

[,1] [,2] [,3]

[1,] -Inf 0.000000 0.6931472

[2,] 1.098612 1.386294 1.6094379

[3,] 1.791759 1.945910 2.0794415

sin(A)

[,1] [,2] [,3]

[1,] 0.0000000 0.8414710 0.9092974

[2,] 0.1411200 -0.7568025 -0.9589243

[3,] -0.2794155 0.6569866 0.9893582

Note also that some operations will collapse the matrix to another (simpler) data type.

Collapse to a vectore:

colSums(A)

[1] 9 12 15

rowSums(A)

[1] 3 12 21

Some functions aggregate the whole matrix to one scalar:

mean(A)

[1] 4

min(A)

[1] 0

© Dr. Philippe J.S. De Brouwer 31/256

Creating and Accessing Arrays i

Arrays can be created with the array() function; this function takes a “dim” attribute which defines the number
of dimension. While arrays are similar to lists, they have to be of one class type (lists can consist of different
class types).
In the example we create an array with two elements, which are both three by three matrices.

© Dr. Philippe J.S. De Brouwer 32/256

Creating and Accessing Arrays ii

Create an array:

a <- array(c('A','B'),dim = c(3,3,2))

print(a)

, , 1

##

[,1] [,2] [,3]

[1,] "A" "B" "A"

[2,] "B" "A" "B"

[3,] "A" "B" "A"

##

, , 2

##

[,1] [,2] [,3]

[1,] "B" "A" "B"

[2,] "A" "B" "A"

[3,] "B" "A" "B"

Access one element:

a[2,2,2]

[1] "B"

Access one layer:

a[,,2]

[,1] [,2] [,3]

[1,] "B" "A" "B"

[2,] "A" "B" "A"

[3,] "B" "A" "B"

© Dr. Philippe J.S. De Brouwer 33/256

Naming of Array Elements

Create two vectors:

v1 <- c(1,1)

v2 <- c(10:13)

col.names <- c("col1","col2", "col3")

row.names <- c("R1","R2")

matrix.names <- c("Matrix1","Matrix2")

Take these vectors as input to the array.

a <- array(c(v1,v2),dim = c(2,3,2),

dimnames = list(row.names,col.names,

matrix.names))

print(a)

, , Matrix1

##

col1 col2 col3

R1 1 10 12

R2 1 11 13

##

, , Matrix2

##

col1 col2 col3

R1 1 10 12

R2 1 11 13

This allows to address the first row in Matrix 1 as follows:

a['R1',,'Matrix1']

col1 col2 col3

1 10 12
© Dr. Philippe J.S. De Brouwer 34/256

Manipulating Arrays

M1 <- a[,,1]

M2 <- a[,,2]

M2

col1 col2 col3

R1 1 10 12

R2 1 11 13

© Dr. Philippe J.S. De Brouwer 35/256

Applying Functions Over Arrays

An efficient way to apply the same function over each element of an array is via the function apply(): that
functions is designed to do exactly that.

Function use for apply()

apply(X, MARGIN, FUN, ...) with:

1 X: an array, including a matrix.

2 MARGIN: a vector giving the subscripts which the function will be applied over. E.g., for a matrix ’1’
indicates rows, ’2’ indicates columns, ’c(1, 2)’ indicates rows and columns. Where ’X’ has named
dimnames, it can be a character vector selecting dimension names.

3 FUN: the function to be applied: see ’Details’. In the case of functions like ’+’, ’backquoted or quoted

© Dr. Philippe J.S. De Brouwer 36/256

An example for apply()

x <- cbind(x1 = 3, x2 = c(4:1, 2:5))

dimnames(x)[[1]] <- letters[1:8]

apply(x, 2, mean, trim = .2)

x1 x2

3 3

col.sums <- apply(x, 2, sum)

row.sums <- apply(x, 1, sum)

rbind(cbind(x, Rtot = row.sums),

Ctot = c(col.sums, sum(col.sums)))

x1 x2 Rtot

a 3 4 7

b 3 3 6

c 3 2 5

d 3 1 4

e 3 2 5

f 3 3 6

g 3 4 7

h 3 5 8

Ctot 24 24 48

© Dr. Philippe J.S. De Brouwer 37/256

Lists: definition

Definition 1 (List)

In R, lists are objects which are sets of elements that are not necessarily all of the same type. Lists can mix
numbers, strings, vectors, matrices, functions, boolean variables, and even lists.

Create a list with the list() function:

myList <- list("Approximation", pi, 3.14, c)

Display the result:

print(myList)

[[1]]

[1] "Approximation"

##

[[2]]

[1] 3.141593

##

[[3]]

[1] 3.14

##

[[4]]

function (...) .Primitive("c")

© Dr. Philippe J.S. De Brouwer 38/256

Naming Elements of Lists i

Create the list:

L <- list("Approximation", pi, 3.14, c)

Assign names to elements:

names(L) <- c("description", "exact", "approx","function")

Show the result:

print(L)

$description

[1] "Approximation"

##

$exact

[1] 3.141593

##

$approx

[1] 3.14

##

$`function`

function (...) .Primitive("c")

© Dr. Philippe J.S. De Brouwer 39/256

Naming Elements of Lists ii

Addressing elements of the named list:

print(paste("The difference is", L$exact - L$approx))

[1] "The difference is 0.00159265358979299"

print(L[3])

$approx

[1] 3.14

print(L$approx)

[1] 3.14

However, "function" was a reserved word, so we need to use

back-ticks in order to address the element:

a <- L$`function`(2,3,pi,5) # to access the function c(...)

print(a)

[1] 2.000000 3.000000 3.141593 5.000000

© Dr. Philippe J.S. De Brouwer 40/256

Lists of Lists Are Also Lists

Start with a vector:

V1 <- c(1,2,3)

Define two lists:

L2 <- list(V1, c(2:7))

L3 <- list(L2,V1)

Show the results:

print(L3)

[[1]]

[[1]][[1]]

[1] 1 2 3

##

[[1]][[2]]

[1] 2 3 4 5 6 7

##

##

[[2]]

[1] 1 2 3

print(L3[[1]][[2]][3])

[1] 4

© Dr. Philippe J.S. De Brouwer 41/256

Add and Delete Elements of a List i

A numbered element can be added while skipping positions. In the following example the position 3 is left
undefined (NULL).

Define a simple list:

L <- list(1,2)

Coerce the fourth position to 4:

L[4] <- 4 # position 3 is NULL

Show the results:

L

[[1]]

[1] 1

##

[[2]]

[1] 2

##

[[3]]

NULL

##

[[4]]

[1] 4

Named elements are always added at the end of the list:

© Dr. Philippe J.S. De Brouwer 42/256

Add and Delete Elements of a List ii

L$pi_value <- pi

L

[[1]]

[1] 1

##

[[2]]

[1] 2

##

[[3]]

NULL

##

[[4]]

[1] 4

##

$pi_value

[1] 3.141593

Delete an element by assigning NULL to it. Notice that the elements get re-ordered. This means that if we
address the elements of a list by their number, we need to recalculate the numbers. If we were addressing the
elements of the list by name, nothing needs to be changed.

© Dr. Philippe J.S. De Brouwer 43/256

Add and Delete Elements of a List iii

L[1] <- NULL

L

[[1]]

[1] 2

##

[[2]]

NULL

##

[[3]]

[1] 4

##

$pi_value

[1] 3.141593

It is also possible to delete an element via the squared brackets.

© Dr. Philippe J.S. De Brouwer 44/256

Add and Delete Elements of a List iv

L <- L[-2]

L

[[1]]

[1] 2

##

[[2]]

[1] 4

##

$pi_value

[1] 3.141593

© Dr. Philippe J.S. De Brouwer 45/256

Convert list to vectors

The list:

L <- list(c(1:5), c(6:10))

The vectors obtained from the list:

v1 <- unlist(L[1])

v2 <- unlist(L[2])

Show the results:

v1

[1] 1 2 3 4 5

v2

[1] 6 7 8 9 10

v2-v1

[1] 5 5 5 5 5

© Dr. Philippe J.S. De Brouwer 46/256

Factors

Factors are created using the factor() function.

Create a vector containing all your observations:

feedback <- c('Good','Good','Bad','Average','Bad','Good')

Create a factor object:

factor_feedback <- factor(feedback)

Print the factor object:

print(factor_feedback)

[1] Good Good Bad Average Bad Good

Levels: Average Bad Good

© Dr. Philippe J.S. De Brouwer 47/256

Plotting factor objects i

Plot the histogram -- note the default order is alphabetic

plot(factor_feedback)

Average Bad Good

0.0
0.5

1.0
1.5

2.0
2.5

3.0

Figure 1: The plot-function will result in a bar-chart for a factor-object.

© Dr. Philippe J.S. De Brouwer 48/256

Plotting factor objects ii

There are a few specific functions for the factor-object. For example, the function nlevels() returns the number
of levels in the factor object.

The nlevels function returns the number of levels:

print(nlevels(factor_feedback))

[1] 3

© Dr. Philippe J.S. De Brouwer 49/256

Ordering Factors

Store the survey results:

feedback <- c('Good','Good','Bad','Average','Bad','Good')

Define the factors while providing the levels in right order:

factor_feedback <- factor(feedback,

levels = c("Bad", "Average", "Good"))

Display results:

plot(factor_feedback)

Bad Average Good

0.0
0.5

1.0
1.5

2.0
2.5

3.0

Figure 2: The factor objects appear now in a logical order.

© Dr. Philippe J.S. De Brouwer 50/256

Generate Factors with the Function gl()

Function use for gl()

gl(n, k, length = n*k, labels = seq_len(n), ordered = FALSE)

with
• n: The number of levels
• k: The number of replications (for each level)
• length (optional): An integer giving the length of the result
• labels (optional): A vector with the labels
• ordered: A boolean variable indicating whether the results should be ordered.

gl(3,2,,c("bad","average","good"),TRUE)

[1] bad bad average average good good

Levels: bad < average < good

© Dr. Philippe J.S. De Brouwer 51/256

Exercise: use factors for mtcars

Question #3

Use the dataset mtcars (from the library MASS) and explore the distribution of number of gears. Then
explore the correlation between gears and transmission.

Question #4

Then focus on the transmission and create a factor-object with the words “automatic” and “manual” in-
stead of the numbers 0 and 1.

Use the ?mtcars to find out the exact definition of the data.

© Dr. Philippe J.S. De Brouwer 52/256

Exercise: cars-horsepower

Question #5

Use the dataset mtcars (from the library MASS) and explore the distribution of the horsepower (hp). How
would you proceed to make a factoring (e.g. Low, Medium, High) for this attribute? Hint: Use the function
cut().

© Dr. Philippe J.S. De Brouwer 53/256

Data Frames i

Data frames are created using the data.frame() function.

Create the data frame.

data_test <- data.frame(

Name = c("Piotr", "Pawel","Paula","Lisa","Laura"),

Gender = c("Male", "Male","Female", "Female","Female"),

Score = c(78,88,92,89,84),

Age = c(42,38,26,30,35)

)

print(data_test)

Name Gender Score Age

1 Piotr Male 78 42

2 Pawel Male 88 38

3 Paula Female 92 26

4 Lisa Female 89 30

5 Laura Female 84 35

The standard plot function on a data-frame (Figure 4.3)

is the same as using the pairs() function:

plot(data_test)

© Dr. Philippe J.S. De Brouwer 54/256

Data Frames ii

Name

1.0
1.2

1.4
1.6

1.8
2.0 ●●

●●●

●

●

●

●

●

1 2 3 4 5

30
35

40

●

●

●

●

●

1.0 1.2 1.4 1.6 1.8 2.0

●

●

●

●

●

Gender

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●●

Score

78 82 86 90

●

●

●

●

●

30 35 40

1
2

3
4

5●

●

●

●

●

●●

● ● ●

78
82

86
90

●

●

●

●

●

Age

Figure 3: The standard plot for a data frame in R shows each column printed in function of each other. This is useful to see
correlations or how generally the data is structured.

© Dr. Philippe J.S. De Brouwer 55/256

Get Information About Data Frames i

Get the structure of the data frame:

str(data_test)

'data.frame': 5 obs. of 4 variables:

$ Name : Factor w/ 5 levels "Laura","Lisa",..: 5 4 3 2 1

$ Gender: Factor w/ 2 levels "Female","Male": 2 2 1 1 1

$ Score : num 78 88 92 89 84

$ Age : num 42 38 26 30 35

Note that the names became factors.

Get the summary of the data frame:

summary(data_test)

Name Gender Score Age

Laura:1 Female:3 Min. :78.0 Min. :26.0

Lisa :1 Male :2 1st Qu.:84.0 1st Qu.:30.0

Paula:1 Median :88.0 Median :35.0

Pawel:1 Mean :86.2 Mean :34.2

Piotr:1 3rd Qu.:89.0 3rd Qu.:38.0

Max. :92.0 Max. :42.0

© Dr. Philippe J.S. De Brouwer 56/256

Get Information About Data Frames ii

Get the first rows:

head(data_test)

Name Gender Score Age

1 Piotr Male 78 42

2 Pawel Male 88 38

3 Paula Female 92 26

4 Lisa Female 89 30

5 Laura Female 84 35

Get the last rows:

tail(data_test)

Name Gender Score Age

1 Piotr Male 78 42

2 Pawel Male 88 38

3 Paula Female 92 26

4 Lisa Female 89 30

5 Laura Female 84 35

© Dr. Philippe J.S. De Brouwer 57/256

Get Information About Data Frames iii

Extract the column 2 and 4 and keep all rows

data_test.1 <- data_test[,c(2,4)]

print(data_test.1)

Gender Age

1 Male 42

2 Male 38

3 Female 26

4 Female 30

5 Female 35

Extract columns by name and keep only selected rows

data_test[c(2:4),c(2,4)]

Gender Age

2 Male 38

3 Female 26

4 Female 30

© Dr. Philippe J.S. De Brouwer 58/256

Editing Data in Data-frames

de(x) # fails if x is not defined

de(x <- c(NA)) # works

x <- de(x <- c(NA)) # will also save the changes in x

data.entry(x) # de is short for data.entry

x <- edit(x) # use the standard editor (vi in *nix)

© Dr. Philippe J.S. De Brouwer 59/256

Add Columns to a Data-frame i

Expand the data frame, simply define the additional column:

data_test$End_date <- as.Date(c("2014-03-01", "2017-02-13",

"2014-10-10", "2015-05-10","2010-08-25"))

print(data_test)

Name Gender Score Age End_date

1 Piotr Male 80 42 2014-03-01

2 Pawel Male 88 38 2017-02-13

3 <NA> Female 92 26 2014-10-10

4 Lisa Female 89 30 2015-05-10

5 Laura Female 84 35 2010-08-25

© Dr. Philippe J.S. De Brouwer 60/256

Add Columns to a Data-frame ii

Or use the function cbind() to combine data frames along columns:

Start_date <- as.Date(c("2012-03-01", "2013-02-13",

"2012-10-10", "2011-05-10","2001-08-25"))

Use this vector directly:

df <- cbind(data_test, Start_date)

print(df)

Name Gender Score Age End_date Start_date

1 Piotr Male 80 42 2014-03-01 2012-03-01

2 Pawel Male 88 38 2017-02-13 2013-02-13

3 <NA> Female 92 26 2014-10-10 2012-10-10

4 Lisa Female 89 30 2015-05-10 2011-05-10

5 Laura Female 84 35 2010-08-25 2001-08-25

or first convert to a data frame:

df <- data.frame("Start_date" = t(Start_date))

df <- cbind(data_test, Start_date)

print(df)

Name Gender Score Age End_date Start_date

1 Piotr Male 80 42 2014-03-01 2012-03-01

2 Pawel Male 88 38 2017-02-13 2013-02-13

3 <NA> Female 92 26 2014-10-10 2012-10-10

4 Lisa Female 89 30 2015-05-10 2011-05-10

5 Laura Female 84 35 2010-08-25 2001-08-25

© Dr. Philippe J.S. De Brouwer 61/256

Adding Rows to a Data-frame

To add a row, we need the rbind() function:

data_test.to.add <- data.frame(

Name = c("Ricardo", "Anna"),

Gender = c("Male", "Female"),

Score = c(66,80),

Age = c(70,36),

End_date = as.Date(c("2016-05-05","2016-07-07"))

)

data_test.new <- rbind(data_test,data_test.to.add)

print(data_test.new)

Name Gender Score Age End_date

1 Piotr Male 80 42 2014-03-01

2 Pawel Male 88 38 2017-02-13

3 <NA> Female 92 26 2014-10-10

4 Lisa Female 89 30 2015-05-10

5 Laura Female 84 35 2010-08-25

6 Ricardo Male 66 70 2016-05-05

7 Anna Female 80 36 2016-07-07

© Dr. Philippe J.S. De Brouwer 62/256

Merging data frames

Merging allows to extract the subset of two data-frames where a given set of columns match.

data_test.1 <- data.frame(

Name = c("Piotr", "Pawel","Paula","Lisa","Laura"),

Gender = c("Male", "Male","Female", "Female","Female"),

Score = c(78,88,92,89,84),

Age = c(42,38,26,30,35)

)

data_test.2 <- data.frame(

Name = c("Piotr", "Pawel","notPaula","notLisa","Laura"),

Gender = c("Male", "Male","Female", "Female","Female"),

Score = c(78,88,92,89,84),

Age = c(42,38,26,30,135)

)

data_test.merged <- merge(x=data_test.1,y=data_test.2,

by.x=c("Name","Age"),by.y=c("Name","Age"))

Only records that match in name and age are in the merged table:

print(data_test.merged)

Name Age Gender.x Score.x Gender.y Score.y

1 Pawel 38 Male 88 Male 88

2 Piotr 42 Male 78 Male 78

© Dr. Philippe J.S. De Brouwer 63/256

Short-cuts

R will allow the use of short-cuts, provided that they are unique. For example, in the data-frame data_test there
is a column Name. There are no other columns whose name start with the letter “N”; hence. this one letter is
enough to address this column.

Use 'N' to refer to 'Name'

data_test$N

[1] Piotr Pawel <NA> Lisa Laura

Levels: Laura Lisa Paula Pawel Piotr

© Dr. Philippe J.S. De Brouwer 64/256

Rows and Column Names in Data Frames

Get the rownames:

colnames(data_test)

[1] "Name" "Gender" "Score" "Age" "End_date"

Access the rownames:

rownames(data_test)

[1] "1" "2" "3" "4" "5"

colnames(data_test)[2]

[1] "Gender"

rownames(data_test)[3]

[1] "3"

Assign new names:

colnames(data_test)[1] <- "first_name"

rownames(data_test) <- LETTERS[1:nrow(data_test)]

print(data_test)

first_name Gender Score Age End_date

A Piotr Male 80 42 2014-03-01

B Pawel Male 88 38 2017-02-13

C <NA> Female 92 26 2014-10-10

D Lisa Female 89 30 2015-05-10

E Laura Female 84 35 2010-08-25

© Dr. Philippe J.S. De Brouwer 65/256

Simple rules for strings

• strings must start and end with single or double quotes,
• a string ends when the same quotes are encountered the next time,
• until then it can contain the other type of quotes.

Example (Using strings)

a <- "Hello"

b <- "world"

paste(a, b, sep = ", ")

[1] "Hello, world"

c <- "A 'valid' string"

© Dr. Philippe J.S. De Brouwer 66/256

Formatting with format()

Function use for format()

format(x, trim = FALSE, digits = NULL, nsmall = 0L,

justify = c("left", "right", "centre", "none"),

width = NULL, na.encode = TRUE, scientific = NA,

big.mark = "", big.interval = 3L,

small.mark = "", small.interval = 5L,

decimal.mark = getOption("OutDec"),

zero.print = NULL, drop0trailing = FALSE, ...)

• x is the vector input.
• digits is the total number of digits displayed.
• nsmall is the minimum number of digits to the right of the decimal point.
• scientific is set to TRUE to display scientific notation.
• width is the minimum width to be displayed by padding blanks in the beginning.
• justify is the display of the string to left, right or center.

© Dr. Philippe J.S. De Brouwer 67/256

Formatting examples

a <- format(100000000,big.mark=" ",

nsmall=3,

width=20,

scientific=FALSE,

justify="r")

print(a)

[1] " 100 000 000.000"

Further information – format()

More information about the format-function can be obtained via ?format or help(format).

© Dr. Philippe J.S. De Brouwer 68/256

Other string functions

• nchar(): returns the number of characters in a string
• toupper(): puts the string in uppercase
• tolower(): puts the string in lowercase
• substring(x,first,last): returns a substring from x starting with the “first” and ending with the “last”
• strsplit(x,split): split the elements of a vector into substrings according to matches of a substring

“split.”
there is also a family of search functions: grep(), grepl(), regexpr(), gregexpr(), and regexec() that
supply powerful search and replace capabilities.
sub() will replace the first of all matches and gsub() will replace all matches.

© Dr. Philippe J.S. De Brouwer 69/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 4: The Basics of R

↓

section 4:

Operators

© Dr. Philippe J.S. De Brouwer 70/256

Arithmetic operators act on each element of an object

v1 <- c(2,4,6,8)

v2 <- c(1,2,3,5)

v1 + v2 # addition

[1] 3 6 9 13

v1 - v2 # subtraction

[1] 1 2 3 3

v1 * v2 # multiplication

[1] 2 8 18 40

v1 / v2 # division

[1] 2.0 2.0 2.0 1.6

v1 %% v2 # remainder of division

[1] 0 0 0 3

v1 %/% v2 # round(v1/v2 -0.5)

[1] 2 2 2 1

v1 ^ v2 # v1 to the power of v2

[1] 2 16 216 32768

© Dr. Philippe J.S. De Brouwer 71/256

Relational Operators compare vectors element by element

v1 <- c(8,6,3,2)

v2 <- c(1,2,3,5)

v1 > v2 # bigger than

[1] TRUE TRUE FALSE FALSE

v1 < v2 # smaller than

[1] FALSE FALSE FALSE TRUE

v1 <= v2 # smaller or equal

[1] FALSE FALSE TRUE TRUE

v1 >= v2 # bigger or equal

[1] TRUE TRUE TRUE FALSE

v1 == v2 # equal

[1] FALSE FALSE TRUE FALSE

v1 != v2 # not equal

[1] TRUE TRUE FALSE TRUE

© Dr. Philippe J.S. De Brouwer 72/256

Logical Operators i

Logical Operators combine vectors element by element. While logical operators can be applied directly on
composite types, they must be able to act on numeric, logical or complex types in order to produce
understandable results.

The vectors:

v1 <- c(TRUE, TRUE, FALSE, FALSE)

v2 <- c(TRUE, FALSE, FALSE, TRUE)

The basic logical operations:

v1 & v2 # and

[1] TRUE FALSE FALSE FALSE

v1 | v2 # or

[1] TRUE TRUE FALSE TRUE

!v1 # not

[1] FALSE FALSE TRUE TRUE

v1 && v2 # and applied to the first element

[1] TRUE

v1 || v2 # or applied to the first element

[1] TRUE

© Dr. Philippe J.S. De Brouwer 73/256

Logical Operators ii

More aspects of logical values:

v1 <- c(TRUE, FALSE, TRUE, FALSE, 8, 6+3i, -2, 0, NA)

class(v1) # v1 is a vector or complex numbers

[1] "complex"

v2 <- c(TRUE)

as.logical(v1) # coerce to logical (only 0 is FALSE)

[1] TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE NA

v1 & v2

[1] TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE NA

v1 | v2

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

© Dr. Philippe J.S. De Brouwer 74/256

Assignment operators are left or right

left assignment

x <- 3

x = 3

x <<- 3

right assignment

3 -> x

3 ->> x

#chained assignment

x <- y <- 4

© Dr. Philippe J.S. De Brouwer 75/256

Various operators

create a list

x <- c(10:20)

x

[1] 10 11 12 13 14 15 16 17 18 19 20

%in% can find an element in a vector

2 %in% x # FALSE since 2 is not an element of x

[1] FALSE

11 %in% x # TRUE since 11 is in x

[1] TRUE

x[x %in% c(12,13)] # selects elements from x

[1] 12 13

x[2:4] # selects the elements with index

[1] 11 12 13

between 2 and 4

© Dr. Philippe J.S. De Brouwer 76/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 4: The Basics of R

↓

section 5:

Flow Control Statements

© Dr. Philippe J.S. De Brouwer 77/256

For

The for-loop is useful to repeat a block of code a certain number of times. R will iterate a given variable through
elements of a vector.

Function use for for()

for (value in vector) {

statements

}

The for-loop will execute the statements for each value in the given vector.

Example (For loop)

x <- LETTERS[1:5]

for (j in x) {

print(j)

}

[1] "A"

[1] "B"

[1] "C"

[1] "D"

[1] "E"

© Dr. Philippe J.S. De Brouwer 78/256

Repeat

The repeat-loop will repeat the block of commands till it executes the break command.

Function use for repeat()

repeat {

commands

if(condition) {break}

}

Example (Repeat loop)

x <- c(1,2)

c <- 2

repeat {

print(x+c)

c <- c+1

if(c > 4) {break}

}

[1] 3 4

[1] 4 5

[1] 5 6

© Dr. Philippe J.S. De Brouwer 79/256

While

The while-loop is similar to the repeat-loop. However, the while-loop will first check the condition and then run the
code to be repeated. So, this code might not be executed at all.

Function use for while()

while (test_expression) {

statement

}

The statements are executed as long the test_expression is TRUE.

Example (While loop)

x <- c(1,2); c <- 2

while (c < 4) {

print(x+c)

c <- c + 1

}

[1] 3 4

[1] 4 5

© Dr. Philippe J.S. De Brouwer 80/256

Loop Control Statements

When the break statement is encountered inside a loop, that loop is immediately terminated and program control
resumes at the next statement following the loop.

v <- c(1:5)

for (j in v) {

if (j == 3) {

print("--break--")

break

}

print(j)

}

[1] 1

[1] 2

[1] "--break--"

© Dr. Philippe J.S. De Brouwer 81/256

Loop control statements

The next statement will skip the remainder of the current iteration of a loop and starts next iteration of the loop.

v <- c(1:5)

for (j in v) {

if (j == 3) {

print("--skip--")

next

}

print(j)

}

[1] 1

[1] 2

[1] "--skip--"

[1] 4

[1] 5

© Dr. Philippe J.S. De Brouwer 82/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 4: The Basics of R

↓

section 6:

Functions

© Dr. Philippe J.S. De Brouwer 83/256

Built-in function

Right after starting, R some functions are available. We call these the “built-in functions.” Some examples are:

• demo(): shows some of the capabilities of R
• q(): quits R
• data(): shows the datasets available
• help(): shows help
• ls(): shows variables
• c(): creates a vector

• seq(): creates a sequence
• mean(): calculates the mean
• max(): returns the maximum
• sum(): returns the sum
• paste(): concatenates vector elements

© Dr. Philippe J.S. De Brouwer 84/256

Help with functions

help(c) # shows help help with the function c

?c # same result

apropos("cov") # fuzzy search for functions

© Dr. Philippe J.S. De Brouwer 85/256

User defined functions

Function use for function()

In R a user defined function (UDF) is created via the function function().

function_name <- function(arg_1, arg_2, ...) {

function_body

return_value

}

Example (A bespoke function)

c_surface

Calculates the surface of a circle

Arguments:

radius -- numeric, the radius of the circle

Returns

the surface of the cicle

c_surface <- function(radius) {

x <- radius ^ 2 * pi

return (x)

}

Test the function:

c_surface(2)

[1] 12.56637
© Dr. Philippe J.S. De Brouwer 86/256

Editing functions in R

Most probably you will work in a modern environment such as the IDE RStudio, which makes editing a text-file
with code and running that code a breeze. However, there might be cases where one has only terminal access to
R. In that case, the following functions might come in handy.

Edit the function with vi:

fix(c_surface)

Or us edit:

c_surface <- edit()

© Dr. Philippe J.S. De Brouwer 87/256

Function with a default argument

Example

The function paste() collates the arguments provided and returns one string that is a concatenation of all
strings supplied, separated by a separator. This separator is supplied in the function via the argument sep .
What is the default separator used in paste()?

Creating functions with a default value

Example (default value for function)

c_surface <- function(radius = 2) {

radius ^ 2 * pi

}

c_surface(1)

[1] 3.141593

c_surface()

[1] 12.56637

© Dr. Philippe J.S. De Brouwer 88/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 4: The Basics of R

↓

section 7:

Packages

© Dr. Philippe J.S. De Brouwer 89/256

The Package System

Additional functions come in “packages.” To use them one needs to install the package first with the function
install.packages(); this will connect to a server, download the functions and prepare them for use. Once
installed on our computer, they can be loaded in the active environment with the function library() or
require().

Example (loading the package DiagrammeR)

Download the package (only once):

install.packages('DiagrammeR')

Load it before we can use it (once per session):

library(DiagrammeR)

© Dr. Philippe J.S. De Brouwer 90/256

Examples of packages i

• To load data
• RODBC, RMySQL, RPostgresSQL, RSQLite: read data from a database
• XLConnect, xlsx: read and write Micorsoft Excel files (of course You can also just export your spreadsheets from

Excel as csv-files)
• foreign: to use eg SAS data
• Note: among R’s standard functionality is handling text files. Use the functions read.table or its more specific siblings

such as read.csv() to read a CSV file and read.fwf() to read a fixed with table.
• To manipulate data

• dplyr: creating subsets, summarizing, rearranging, and joining data sets
• tidyr: changing the layout of your data sets
• stringr: tools for regular expressions and character strings
• lubridate: tools to facilitate working with dates and times
• reshape: tools to present data differently (melt and cast)

• To visualize data
• ggplot2: allows professional graphics (and has many extensions)
• ggvis: to build interactive, web based graphics
• rgl: Interactive 3D visualizations with R
• htmlwidgets: build interactive (javascript based) visualizations. Packages that implement htmlwidgets include:

leaflet (maps), dygraphs (time series), DT (tables), diagrammeR (diagrams), network3D (network graphs), threeJS (3D
scatterplots and globes).

• googleVis: use Google Chart tools to visualize data in R.

© Dr. Philippe J.S. De Brouwer 91/256

Examples of packages ii

• To model data
• car: car’s Anova function is popular for making type II and type III Anova tables
• mgcv: Generalized Additive Models
• lme4/nlme: Linear and Non-linear mixed effects models
• randomForest: random forest methods from machine learning
• multcomp: tools for multiple comparison testing
• vcd: visualization tools and tests for categorical data
• glmnet:Lasso and elastic-net regression methods with cross validation
• survival: tools for survival analysis
• caret: tools for training regression and classification models

• To report results
• shiny: make interactive web-apps (e.g. explore data and share findings with non-programmers)
• R Markdown: write R code in markdown report (when run render is run, R Markdown will replace the code with its

results and then export your report as an HTML, pdf, or MS Word document, or a HTML or pdf slideshow. Hence,
allows automated reporting. R Markdown is integrated into RStudio.

• knitr: the same tool but for use in LaTeX (and can be used for other markup languages)
• xtable: coverts R objects (such as data frames) and returns the latex or HTML code

• For Spatial data
• sp, maptools: tools for loading and using spatial data including shapefiles.
• maps: use map polygons for plots.
• ggmap: use street maps from Google maps as a background in ggplots

© Dr. Philippe J.S. De Brouwer 92/256

Examples of packages iii

• For Time Series and Financial data
• zoo: provides a format for saving time series objects
• xts: tools for manipulating time series data sets
• quantmod: tools for downloading financial data, plotting common charts, and doing technical analysis

• To write high performance R code
• Rcpp: use C++ code from within R functions for fast speed
• data.table: an alternative way to organize data sets for faster operations. Useful for big data.
• parallel: parallel processing in R

• To work with the web
• XML: read and create XML documents with R
• jsonlite: read and create JSON data tables with R
• httr: tools for working with http connections

• To write your own R packages
• devtools: tools for turning your code into an R package
• testthat: provides an easy way to write tests for your code
• roxygen2: (like Oxygen for C++) turns inline code comments into documentation pages and builds a package

namespace.

© Dr. Philippe J.S. De Brouwer 93/256

Useful functions for packages

Below we show some useful functions related to working with packages. Note that the output is supressed in this
code. The reason is that it would be too lenghty and have limited relevance for the reader: best is to try it yourself.

See the path where libraries are stored:

.libPaths()

See the list of installed packages:

library()

See the list of currently loaded packages:

search()

© Dr. Philippe J.S. De Brouwer 94/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 4: The Basics of R

↓

section 8:

Selected Data Interfaces

© Dr. Philippe J.S. De Brouwer 95/256

Import a CSV file

To read a CSV-file it needs to be in the current directory

or we need to supply the full path, or go first to the relevant folder.

setwd("./../../data/") # change working directory

data <- read.csv("eurofxref-hist.csv")

is.data.frame(data)

ncol(data)

nrow(data)

head(data)

hist(data$CAD, col = 'khaki3')

Histogram of data$CAD

data$CAD

Fr
eq

ue
nc

y

1.2 1.3 1.4 1.5 1.6 1.7 1.8

0
20

0
40

0
60

0
80

0
10

00

Figure 4: The histogram of the CAD.

plot(data$USD, data$CAD, col = 'red')

●●●●●●●●●●
●●●●

●
●●●●●
●
●
●●●●

●●●

●

●
●
●

●

●●
●●
●
●●●●●
●●

●●
●●
●
●●●●●●●●●

●●●●
●●●
●●●●●
●●●●●
●●
●●●●●

●●●
●●
●●

●●●●

●●●
●
●●

●●
●

●
●

●
●
●●●●●●

●●●
●● ●●●●

●●●●
●
●●●●●●●●
●●

●●
●●

●●
●●●
●
●●
●

●●●●
●
●
●●

●●
●●
●●●

●●●●
●●●●
●●●

●●●
●
●
●●●●●
●●
●●●

●●●●●●●●
●●●●●●●●

●●●●●●
●
●●●●

●●●●●●●●●
●●●●●

●
●●
●●●

●●●●
●

●●
●●●

●●●●
●●
●

●
●
●
●●●●
●

●
●●●●●●●●●

●●●●●●
●

●
●●●●

●●●
●●

●
●
●●

●
●
●●●
●
●●
●●●

●
●●●●

●
●●●●

●

●●●
●

●●
●
●

●
●

●
●●

●
●

●●
●

●
●

●●
●

●●
●●●
●●●

●●●

●

●

●●
●

●

●●●●●

●

●

●●●
●●●●
●

●●
●●●●

●
●●●

●●

●●
●●●●●
●●●●●●
●●●
●●
●●●●

●●
●

●

●●
●●

●
●●
●●

●●
●
●●●●●

●●●

●●
●
●

●

●●● ●●●
●●●

●
●●●●

●●●●
●●

●●●

●
●

●
●
●●
●●●●

●●●
●●
●
●
●●
●

●●
●●●●● ●●●

●

●●
●●●●●

●
●
●●●●

●●●●●●●●●
●●
●

●

●
●

●●●
●●●

●●●●
●

●●

●
●●
●

●

●●
●●

●
●●●●●●●

●●
●●●
●

●●
●
●●

●●
●

●●●●●
●●●

●●●●
●

●●
●
●●

●●
●●

●
●

●

●
●●
●●●●

●●
●●●

●●●
●
●●

●
●

●

●
●●●●

●●●
●●
●●●●●

●●●
●●●●

●
●

●●
●
●●

●●
●●

●
●●

●●●●●

●●
●●●●●●●●
●●●

●●●
●
●●

●●●
●●●
●●

●●
●●●
●●●●
●
●

●●●
●●●●●

●
●●●●●●●●
●

●●●●●
●
●●
●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●

●●
●●●●●●
●●●●●●
●●●
●●●●●●●
●●
●●●●●●●●●●
●●
●●●●●●
●●●●

●●
●●●●●

●●●●●●●●●●●●●●●
●●
●●●
●
●●●●
● ●

●●●
●●●●

●
●●
●●
●

●●●●
●
●
●●●●●

●

●●●
●●●●

●●●
●
●●
●

●●●●●
●●●
●●
●
●
●●●

●
●●

●●
●●●

●●
●●●●●●●●●

●●●●
●●●

●●●●●●●●●●
●

●●●●

●
●●●●●

●
●●●●●

●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●
●●●

●●
●●
●●
●

●●●●●●
●
●●

●●●
●●●●●●●●●●●●●●●●●

●●●
●●
●●●
●●

●●
●● ●●

●●●●
●

●
●●●●●●●●●●●●●

●●●
●●●
●●

●●●●
●●

●
●●
●●●●
●

●
●●●

●●●●●
●

●●●●●
●
●●●
●●●

●
●●

●●
●●●●●●
●●●

●
●●

●
●
●
●●

●●●
●

●●●●
●●●

●●●

●
●●●●●

●●●●
●●●●●●

●
●●●●●●●
●●

●●●●●●
●●●●●●

●●●●●
●●●●●●●●●●●●
●●

●●●
●●●
●
●●
●●

●●

●●●●●●
●●●●●●●●●●●●●
●●
●●●

●●●●●●●
●●●●●●●●

●
●●●●
●●●●
●

●●
●

●●●●
●●●●●●●●
●

●●
●●●●

●●
●●
●
●

●●●
●●●●●●●●●●●●●●●●

●●●
●●●●

●●
●
●
●●●●

●●●●●●
●●

●●●●●
●●

●●
●●●
●●●●●

●
●●●●●●●

●●●●●●●●
●
●
●●●●
●

●

●
●●●

●●●●
●

●●
●●●●●

●
●

●
●
●●●●●●●●●

●●●●
●
●●
●

●●●
●●●●●

●●●
●●
●●●●● ●●

●
●●
●●●●●●

●
● ●●

●
●●●●●

●●●●
●●
●

●
●

●
●

●
●

●

●●●
●●●
●●

●●●●
●●

●
● ●

●●
●

●●●●

●●

●
●
●●●

● ●
●●
●●●●

●●●
●●●●●●●●●●●● ●●

●
●
●
●

●
●

●●
●●●●

●●
●●
●●●●● ●

●
●

●●●●
●●●

●
●

●●●●●
●

●●●

●●●●
●●

●●●●
●

●●●
●●●●●●

● ●
●
●

●

●
●

●●●●
●●

●●
●
●

●●●
●●

●●●●●●
●

●
●●●●
●●●●

●
●●

●
●
●

●●
●●

●●●
●●

●
●

●●●
●●●●

●
●●
●

●
●

●●
●●●●●●

●●●
●

●●

●

●

●●
●●

●

●
●

●
●●

●
●●●●

●
●
●●●

●
●

●●●● ●●
●●

●●
●
●

●
●

●
●
●●

●●
●

●
●
●

●●
●

●
●●●●●●

●●●●●●● ●
●

●●
●

●●
●●

●
●●

●
●
●●●

●
●●

●●
●

●●
●●

●●●

●
●
●

●
●
●●●●
●●

●●
●●●

●
●

●●

●
●
●●

●
●●
●●●●●

●

●
●
●

●●

●●
●
●

●●●●

●

●
● ●●●
●
●

●
●●●●●

●●●
●
●

●
●

●
●

●●●

●
●

●

●

●

●
●● ●●

●
●

●●
●

● ●
●●
●
●●●●●●

●●
●●●●
●

●●●●

●
●●
●●

●●
●●
●

●
●●

●●●●●●●●●●

●
●

●●
●●

●●
●●●●

●

●●●● ●
●

●
●●●

●●●
●

●● ●●●

●
●

●●
●●
●●●

●
●●
●●

●
●●
●
● ●●

●
●●

●●
●

●
●
●●

●
●

●
●●●●

●
●

●
●●●●

●
●●

●
●

●
●●
●●● ●

●
●●

●●●
●●●●

●

●
●
●●

●

●
●

●

●●

●●●●●
●●

●●
●

●
●

●●
●

●●●
●

●
●●

●●
●●●●●
●●

●
●

●

●
●
●
●

●●●
●●●●

●
●●●●●

●

●

●●●●●●●●●
●●
●●

●●

●

●●
●

●
● ●

●
●

●
●

●●

●●●
●●●

●
●●●●●●

●
●
●●

●
●●

●●●
●
●●●

●●●●
●

●●
●

●

●●

●
●●●

●
●

●
●

●
●●

●●●

●
●●
●●

●●
●

●
●●
●●

●
●●
●●

●●●
●●

●

●
●

●
●●

●
●
●

●●
●

●●

●

●

●●●
●●●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●
●

●
●

●

●
●
●●●

●●●

●●

●

●
●●●●

● ● ●
●

●
●

●

●

● ●

●●

●●

●

●

● ●●
●

●

●

●
●

●

●
●

●
●
●

● ●●

●●●
●

●
●

●

●
●

●
●

●
●●●

●
●

●●
●

●●●● ●
●
●●●

●
●

●
●●

●●
●●●

●●●●
●●
●

●●
●●●●●
●●

●

●
●●●●

●●
●
●
●●

●●●●
●
●●
●

●●●

●

●

●

●
●●

●
●
●

●●●●●●●●●●●
●●
●●
●

●●●●
●
●●

●
●
●
●●●

●
●●●●

●
●
●●

●

●

●

●
●●

●
●●

●●●

●
●●●

●
●●●●

●●
●●●

●
●

●●
●

●
●

●●●●●

●●●
●●●
●●

●●
●

●●●
●●

●●
●

●

●●●●

●
●

●
●●

●●
●●
●●
●

●
●●●●
●

●

●

●
●●
●
●

●
●●●●

●

●●●

●
●●

●

●

●
●●●

●
●●●

●●●
●

●●
●

●●●●●●●●
●
●●●●●●
●
●●●●

●
●●●
●
●●

●

●●
●●●

●●●●
●●

●●●●
●●
●

●●●
●●
●●

●●
●●●
●●

●

●●●●●●●●
●
●

●
●●
●●●●

●●
●●●●
●●●
●

●●
●●●
●●

●●●
●●
●

●
●●●
●●●
●
●
●●
●●●●●
●●
●●
●●●
●

●●
●●
●●●●●●

●●●●●●
●●●●●●●

●
●●

●●●
●
●●●●●●●●●
●●●
●●●●
●●●

●
●
●●●●
●
●●●●●●●
●

●●●●●●●

●●●●
●●

●●

●●●●
●●
●

●●
●●●
●

●●
●●●●

●
●
●●●●

●●●●
●●●●●●●

●●●
●●

●
●●●

●●●●
●●●●●●●
●●

●
●●●●

●●●●
●●●●

●●●●●●●●
●

●●●●
●●●●●
●●
●

●
●●●●●●●●●
●●

●●
●
●●●

●
●●●●

●●●
●
●
●
●●
●●●●●●

●
●●●●●●●
●●●●
●●

●

●●●●
●●●●●
●●

●
●●●

●●●●●

●●
●●●●●●

●●●
●

●●●●●
●●●●

●

●●●●
●●●●●

●●
●●

●
●

●
●●●●●●

●●●
●
●

●●
●●
●●
●●●●
●●●●●●●

●●●
●●
●

●●●●
●

●
●

●●●
●●●
●●

●●
●

●●
●

●
●●●
●
●
●
●●
●●●

●●●●●●
●●
●

●●
●●●

●

●●
●●●●●●
●●

●
●●●●●●●
●●
●

●●
●

●●
●●
●●

●
●

●
●●

●
●●●
●●●●

●
●

●●●●
●●

●
●●●●

●
●
●●

●
●●●
●

●●●●●
●●

●●●
●

●
●

●
●●

●
●
●●

●●
●●
●●
●

●
●

●●
●●●●

●●●●
●

●
●●●

●●●
●

●●

●●●
●●●●●

●
●

●●●●●●
●●
●●

●
●●
●●

●
●●●●●●●●●

●
●
●●●

●●●●
●

●●●●●●●●●
●●●

●●
●●●
●●●●

●●
●●●●●●

●

●
●

●●●●●
●●●

●●
●●●●●

●●●●
●●●● ●●
●● ●
●●●

●●● ● ●
●
●
●●

●●●

●●●
●

●●
●

●●●●

●●
●

●
●●

●●●●●●
●●
●●●

●●
●

●●
●●

●●●●●
●●●●●●

●
●●

●●●●
●●
●
●●●

●
●●●
●●●
●

●
●

●

●●
●●

●
●
●●

●
●
●●

●●●●●
●●

●●●
●

●●●●●

●●●

●●
●
●●

●
●●

●●●●
●●●●●●●●●●●●

●●
●

●●
●●
●●●●

●

●●●●
●
●●●

●●
●
●●

●●
●
●●

●
●
●

●●●●
●

●
●●

●
●●

●
●
●●●
●●●

●
●
●●●●

●●●

●●

●●
●
●

●●●●●●●
●

●●
●●

●●
●●

●

●
●●
●

●●●
●●●●●

●●●●●
●●●●

●
●●●

●
●

●

●

●
●

●
●

●
●
●
●●●●●

●●●
●
●●

●
●●
●

●
●

●
●●●
●●

●●
●

●●
●●

●●●
●●●

●●
●

●●●●
●●
●●

●
●●●●●●●●●●●
●
●●●

●●●●
●

●
●●●

●●●●●
●●

●
●●
●

●●●●●

●●
●●●

●●●
●
●
●

●●●
●
●
●●
●
●
●
●●●

●
●

●●●●
●●

●

●
●

●
●

● ●●●
●

●
●●●●

●●●●●
●●
●

●
●●

●●●●
●●
●●●
●

●●
●

●●
●

●●

●
●●
●

●●

●●
●●

●
●

●●●
●

●●●
●

●●●

●●●●

●●●●
●●

●●●

●●●
●●

●●●●

●
●

●
●●●●●●

●

●●
●●●●

●
●●

●●
●●●●
●●●

●
●

●

●
●

●●●●●●●●●
●●
●●●

●
●●

●
●

●
●

●
●

●●
●
●
●

●
●
●

●
●
●●

●●●●
●

●●●●●

●●●

●

●
●●●●●
●

●●
●

●●●
●●

●●●
●●●●
●

●●
●●
●●

●●
●
●

●
●
●

●●
●
●
●
●●●

●
●

●
●●
●●

●
●

●●
●●●●

●●●
●
●
●
●
●

●

●●●
●●
●

●
●
●

●●●
●

●●●
● ●●●●

●

●

●●●
●

●
●
●●
●●●

●
●

●●
●●●

●●●

●●●●●
●●●

●
●●

●●
●●●
●

●●●●
●●

●●●●
●●

●●●●
●●

●●●●●●●●●●●●●●
●●●

●●●●●
●●●●
●●

●●●
●
●●●●

●●●●●●
●
●

●●●●
●●
●●●●●

●●●●●
●

●
●

●●
●
●●

●

●●
●●●●●
●
●●

●●●
●●●●●●
●●●●

●
●●●
●●●●●

●●●●●
●
●●●
●

●●●
●

●●

●●
●
●

●

●●●●
●
●●
●●
●

●
●
●●
●●

●
●●●●
●●
●●●
●●●●●

●●

●

●

●

●
●●

●
●

●●
●●
●●

●

●●●
●●

●●●

●
●●
●●●
●

●●●
●●

●●
●

●

●

●
●

●
●
●

●
●

●●
●
●●
●●

●●
●

●
●●●●

●

●
●

●●●●

●●●●
●●●

●●
●
●

●
●●
●
●●●●
●●
●●●●●●

●●
●
●●●

●●●
●●

●
●●
●●

●

●
●●●

●●●●

●●●
●

●
●
●
●

●●●
●●

●

●
●

●●●●

●

●

●

●
●

●

●
●

●●

●●●●●
●

●●
●●

●
●

●

●●●●●
●●

●●
●
●

●
●

●
●●
●●

●
●

●
●●

●●●●

●
●●●

●

●●
●

●

●
●●●
●●
●●●●

●
●

●●●

●
●

●

●
●
●

●

●
●●●

●●

●●
●

●
●
●●●
●
●●
●●●●●

●●

●

●
●
●●

●
●
●●●

●●

●
●

●
●●
●
●
●●●

●●●

●●●
●

●

●
●●
●
●

●●

●

●
●●

●●●
●
●

●●

●●●●

●●
●●
●●

●●
●

●
●●

●●●
●●

●●
●

●
●●

●

●

●
●

●●●●
●

●

●
●

●
●

●
●
●
●

●
●

●
●●

●
●
●
●
●

●●
●●

●
●

●
●●
●
●
●●●
●●

●

●●●
●●

●
●●●

●
●●●
●●

●
●

●●
●●●

●
●

●
●

●

●

●

●

●

●●
●

●●●
●
●●●

●
●

●●
●
●●

●
●●●
●●●●●

●
●
●●

●
●

●●
●

●●●
●

●●●●
●●●
●

●●
●●
●
●●●

●●●●●●

●●
●●●

●●
●
●●

●●●●
●

●●●
●

●
●●

●

●
●

●●
●●●

●●

●
●●

●●
●
●
●●

●
●●
●

●
●

●●●●●●●

●
●
●

●●

●
●●

●

●
●
●
●

●
●
●

●●●●

●●
●

●
●●●●

●
●●●●●

●

●●
●

●

●●●●●
●●●●●●

●●

●●●
●

●●
●●
●

●
●
●●
●
●●

●
●
●
●●●
●●●
●●●●

●●●
●
●●●
●●
●
●

●

●
●
●
●
●●●●●

●●●
●

●●●

●
●●●●●
●●●●●
●

●●●●
●

●●●●●
●●

●
●●

●●●●
●
●●

●
●

●
●
●

●●●
●
●●

●●

●

●
●●
●
●

●
●●
●●
●
●●
●
●

●

●
●

●●
●

●●

0.8 1.0 1.2 1.4 1.6

1.2
1.3

1.4
1.5

1.6
1.7

1.8

data$USD

da
ta$

CA
D

Figure 5: A scatter-plot of one variable with another.

© Dr. Philippe J.S. De Brouwer 96/256

Finding data i

get the maximum exchange rate

maxCAD <- max(data$CAD)

use SQL-like selection

d0 <- subset(data, CAD == maxCAD)

d1 <- subset(data, CAD > maxCAD - 0.1)

d1[,1]

[1] 2008-12-30 2008-12-29 2008-12-18 1999-02-03 1999-01-29 1999-01-28

[7] 1999-01-27 1999-01-26 1999-01-25 1999-01-22 1999-01-21 1999-01-20

[13] 1999-01-19 1999-01-18 1999-01-15 1999-01-14 1999-01-13 1999-01-12

[19] 1999-01-11 1999-01-08 1999-01-07 1999-01-06 1999-01-05 1999-01-04

4718 Levels: 1999-01-04 1999-01-05 1999-01-06 1999-01-07 ... 2017-06-05

© Dr. Philippe J.S. De Brouwer 97/256

Finding data ii

d2 <- data.frame(d1$Date,d1$CAD)

d2

d1.Date d1.CAD

1 2008-12-30 1.7331

2 2008-12-29 1.7408

3 2008-12-18 1.7433

4 1999-02-03 1.7151

5 1999-01-29 1.7260

6 1999-01-28 1.7374

7 1999-01-27 1.7526

8 1999-01-26 1.7609

9 1999-01-25 1.7620

10 1999-01-22 1.7515

11 1999-01-21 1.7529

12 1999-01-20 1.7626

13 1999-01-19 1.7739

14 1999-01-18 1.7717

15 1999-01-15 1.7797

16 1999-01-14 1.7707

17 1999-01-13 1.8123

18 1999-01-12 1.7392

19 1999-01-11 1.7463

20 1999-01-08 1.7643

21 1999-01-07 1.7602

22 1999-01-06 1.7711

23 1999-01-05 1.7965

24 1999-01-04 1.8004

hist(d2$d1.CAD, col = 'khaki3')

Histogram of d2$d1.CAD

d2$d1.CAD

Fr
eq

ue
nc

y

1.70 1.72 1.74 1.76 1.78 1.80 1.82

0
2

4
6

8
10

© Dr. Philippe J.S. De Brouwer 98/256

Writing to a CSV file i

© Dr. Philippe J.S. De Brouwer 99/256

Writing to a CSV file ii

write.csv(d2,"output.csv", row.names = FALSE)

new.d2 <- read.csv("output.csv")

print(new.d2)

d1.Date d1.CAD

1 2008-12-30 1.7331

2 2008-12-29 1.7408

3 2008-12-18 1.7433

4 1999-02-03 1.7151

5 1999-01-29 1.7260

6 1999-01-28 1.7374

7 1999-01-27 1.7526

8 1999-01-26 1.7609

9 1999-01-25 1.7620

10 1999-01-22 1.7515

11 1999-01-21 1.7529

12 1999-01-20 1.7626

13 1999-01-19 1.7739

14 1999-01-18 1.7717

15 1999-01-15 1.7797

16 1999-01-14 1.7707

17 1999-01-13 1.8123

18 1999-01-12 1.7392

19 1999-01-11 1.7463

20 1999-01-08 1.7643

21 1999-01-07 1.7602

22 1999-01-06 1.7711

23 1999-01-05 1.7965

24 1999-01-04 1.8004

Warning – Silently added rows

Without the row.names = FALSE statement, the function write.csv() would add a row that will get the
name “X.”

© Dr. Philippe J.S. De Brouwer 100/256

Import of Excel files

install the package xlsx if not yet done

if (!any(grepl("xlsx",installed.packages()))){

install.packages("xlsx")}

library(xlsx)

data <- read.xlsx("input.xlsx", sheetIndex = 1)

© Dr. Philippe J.S. De Brouwer 101/256

Databases

R can connect to many popular database systems. For example, MySQL: as usual there is a package that will
provide this functionality.

if(!any(grepl("xls", installed.packages()))){

install.packages("RMySQL")}

library(RMySQL)

© Dr. Philippe J.S. De Brouwer 102/256

Connecting to the Database

Note: more details in the part dealing with databases.

The connection is stored in an R object, myConnection, and

it needs the database name (db_name), username and password

myConnection = dbConnect(MySQL(),

user = 'root',

password = 'xxx',

dbname = 'db_name',

host = 'localhost')

e.g. list the tables available in this database.

dbListTables(myConnection)

© Dr. Philippe J.S. De Brouwer 103/256

Fetching Data Drom a Database

Prepare the query for the database

result <- dbSendQuery(myConnection,

"SELECT * from tbl_students WHERE age > 33")

fetch() will get us the results, it takes a parameter n, which

is the number of desired records.

Fetch all the records(with n = -1) and store it in a data frame.

data <- fetch(result, n = -1)

© Dr. Philippe J.S. De Brouwer 104/256

Update Queries

The dbSendQuery() function can be used to send any query, including UPDATE, INSERT, CREATE TABLE and
DROP TABLE queries so we can push results back to the database.

sSQL = ""

sSQL[1] <- "UPDATE tbl_students

SET score = 'A' WHERE raw_score > 90;"

sSQL[2] <- "INSERT INTO tbl_students

(name, class, score, raw_score)

VALUES ('Robert', 'Grade 0', 88,NULL);"

sSQL[3] <- "DROP TABLE IF EXISTS tbl_students;"

for (k in c(1:3)){

dbSendQuery(myConnection, sSQL[k])

}

© Dr. Philippe J.S. De Brouwer 105/256

Create Tables from R Data-frames

It is most useful to be able to write back complete data-frames to a data-base.

dbWriteTable(myConnection, "tbl_name",

data_frame_name[,], overwrite = TRUE)

© Dr. Philippe J.S. De Brouwer 106/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics
↓

chapter 5:

Lexical Scoping and Environments

© Dr. Philippe J.S. De Brouwer 107/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 5: Lexical Scoping and Environments

↓

section 1:

Environments in R

© Dr. Philippe J.S. De Brouwer 108/256

The Global Environment i

The top-level environment is the R command prompt. This is the “global environment” and known as
R_GlobalEnv and can be accessed as .GlobalEnv.

environment() # get the environment

<environment: R_GlobalEnv>

rm(list = ls()) # clear the environment

ls() # list all objects

character(0)

a <- "a"

f <- function (x) print(x)

ls() # note that x is not part of.GlobalEnv

[1] "a" "f"

© Dr. Philippe J.S. De Brouwer 109/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 5: Lexical Scoping and Environments

↓

section 2:

Lexical Scoping in R

© Dr. Philippe J.S. De Brouwer 110/256

R has dynamic scoping

f

Demonstrates the scope of variables

f <- function() {

a <- pi # define local variable

print(a) # print the local variable

print(b) # b is not in the scope of the function

}

Define two variables a and b

a <- 1

b <- 2

Run the function and note that it knows both a and b.

For b it cannot find a local definition and hence

uses the definition of the higher level of scope.

f()

[1] 3.141593

[1] 2

f() did not change the value of a in the environment that called f():

print(a)

[1] 1

The variable b is not defined within the function, but the function can access it. This means that at the moment
we use b in the function, R will first try to find it in the environment of the function. Since this fails, R will check
the superior environment. R will repeat this process till it finds the variable. Of course, once it cannot find the
variable in R_GlobalEnv it will throw an error.© Dr. Philippe J.S. De Brouwer 111/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics
↓

chapter 6:

The Implementation of OO

© Dr. Philippe J.S. De Brouwer 112/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 6: The Implementation of OO

↓

section 1:

Base Types

© Dr. Philippe J.S. De Brouwer 113/256

Base types i

The basic object provided by R are called “base types”. Examples are:

• character,
• double,
• complex,
• vectors,
• lists,
• arrays,
• matrices,
• functions,
• etc.

These are objects that can readily be used when R is started.

© Dr. Philippe J.S. De Brouwer 114/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 6: The Implementation of OO

↓

section 2:

S3 Objects

© Dr. Philippe J.S. De Brouwer 115/256

S3 Objects i

Many of the most simple objects in R are S3 objects. Examples are:

• data frames,

• models,

• time series,

• predictions about models,

• etc.

S3 ojbects have the class-attribute set so that dispatcher functions can identify the appropriate method that
should be executed. For example a data frame has the class attribute set to data.frame and hence the method
plot() will dispatch execution to plot.data.frame().
All we need to do to create an S3 object is to set its class attribute:

© Dr. Philippe J.S. De Brouwer 116/256

S3 Objects ii

Define a function to check if something is S3:

is.S3 <- function(x){is.object(x) & !isS4(x)}

A string is a base type and not an non-S3 ojbect:

x <- 'x'

is.S3(x)

[1] FALSE

A string with a class attribute is a valid S3 object:

class(x) <- 'myclass'

is.S3(x)

[1] TRUE

© Dr. Philippe J.S. De Brouwer 117/256

Methods for S3 Objects i

Even for this simple example, it is possible to build specific methods.

Define the method print for the class myclass:

print.myclass <- function(x) {print(paste0('Hello, ', x, '.'))}

Test it, first with the existing myclass object:

print(x)

[1] "Hello, x."

Test it on a character base type (string):

print('x')

[1] "x"

© Dr. Philippe J.S. De Brouwer 118/256

Testing S3 Objects with pryr i

Above, we created a function is.S3() to test if an something is an S3 object. It is not really necessary to create
such function by ourselves. We can leverage the library pryr, which provides a function otype() that returns the
type of object.

library(pryr)

otype(M)

[1] "base"

otype(df)

[1] "S3"

otype(df$X1) # a vector is not S3

[1] "base"

df$fac <-factor(df$X4)

otype(df$fac) # a factor is S3

[1] "S3"

© Dr. Philippe J.S. De Brouwer 119/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 6: The Implementation of OO

↓

section 3:

S4 Objects

© Dr. Philippe J.S. De Brouwer 120/256

S4 Objects i

The S4 system is very similar to the S3 system, but it adds a certain obligatory formalism. For example, it is
necessary to define the class before using it. This adds some lines of code but the payoff is increased clarity.

In S4

1 classes have formal definitions that describe their data fields and inheritance structures (parent classes);

2 method dispatch is more flexible and can be based on multiple arguments to a generic function, not just
one; and

3 there is a special operator, @ , for extracting fields from an S4 object.

All the S4 related code is stored in the methods package.

© Dr. Philippe J.S. De Brouwer 121/256

Creating S4 class definitions

S4 objects are created with the function setClass().

Create the object type Acc to hold bank-accounts:

setClass("Acc",

representation(holder = "character",

branch = "character",

opening_date = "Date"))

Create the object type Bnk (bank):

setClass("Bnk",

representation(name = "character", phone = "numeric"))

Define current account as a child of Acc:

setClass("CurrAcc",

representation(interest_rate = "numeric",

balance = "numeric"),

contains = "Acc")

Define investment account as a child of Acc

setClass("InvAcc",

representation(custodian = "Bnk"), contains = "Acc")

© Dr. Philippe J.S. De Brouwer 122/256

Using S4 classes and creating objects

At this point, the classes Bnk and Acc exist and we can create a first instance for both.

Create an instance of Bnk:

my_cust_bank <- new("Bnk",

name = "HSBC",

phone = 123456789)

Create an instance of Acc:

my_acc <- new("Acc",

holder = "Philippe",

branch = "BXL12",

opening_date = as.Date("2018-10-02"))

© Dr. Philippe J.S. De Brouwer 123/256

Accessing information in S4 objects i

Now, we have two S4 objects and we can use them in our code as necessary. For example, we can change the
phone number.

Check if it is really an S4 object:

isS4(my_cust_bank)

[1] TRUE

Change the phone number and check:

my_cust_bank@phone = 987654321 # change the phone number

print(my_cust_bank@phone) # check if it changed

[1] 987654321

Note – Compare addressing slots in S4 and S3

In order to access slots of an S4 object, we use @ , not $:

© Dr. Philippe J.S. De Brouwer 124/256

Creating an instance of a S4 object

my_curr_acc <- new("CurrAcc",

holder = "Philippe",

interest_rate = 0.01,

balance = 0,

branch = "LDN12",

opening_date = as.Date("2018-12-01"))

Note that the following does not work and is bound to fail:

also_an_account <- new("CurrAcc",

holder = "Philippe",

interest_rate = 0.01,

balance = 0,

Acc = my_acc)

Error in initialize(value, ...): invalid name for slot of class "CurrAcc": Acc

The object my_curr_acc is now ready to be used. For example, we can change the balance.

my_curr_acc@balance <- 500

© Dr. Philippe J.S. De Brouwer 125/256

Validation of input for S4 objects

Note the mistake in the following code:

my_curr_acc <- new("CurrAcc",

holder = "Philippe",

interest_rate = 0.01,

balance = "0", # Here is the mistake!

branch = "LDN12",

opening_date = as.Date("2018-12-01"))

Error in validObject(.Object): invalid class "CurrAcc" object: invalid object for slot "balance" in class "CurrAcc":

got class "character", should be or extend class "numeric"

If you omit a slot, R coerces that slot to the default value.

x_account <- new("CurrAcc",

holder = "Philippe",

interest_rate = 0.01,

#no balance provided

branch = "LDN12",

opening_date = as.Date("2018-12-01"))

Show what R did with it:

x_account@balance

numeric(0)

© Dr. Philippe J.S. De Brouwer 126/256

Creating S4 Generics

setGeneric needs a function, so we need to create it first.

credit

Dispatcher function to credit the ledger of an object of

type 'account'.

Arguments:

x -- account object

y -- numeric -- the amount to be credited

credit <- function(x,y){useMethod()}

transform our function credit() to a generic one:

setGeneric("credit")

[1] "credit"

Add the credit function to the object CurrAcc

setMethod("credit",

c("CurrAcc"),

function (x, y) {

new_bal <- x@balance + y

new_bal

}

)

Test the function:

my_curr_acc@balance

[1] 500

my_curr_acc@balance <- credit(my_curr_acc, 100)

my_curr_acc@balance

[1] 600

© Dr. Philippe J.S. De Brouwer 127/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 6: The Implementation of OO

↓

section 4:

The Reference Class, refclass, RC or R5 Model

© Dr. Philippe J.S. De Brouwer 128/256

Create an RC object

Definition of RC object currentAccount

currAccount <- setRefClass("currentAccount",

fields = list(interest_rate = "numeric",

balance = "numeric"),

contains = c("account"),

methods = list(

credit = function(amnt) {

balance <<- balance + amnt

},

debet = function(amnt) {

if (amnt <= balance) {

balance <<- balance - amnt

} else {

stop("Not rich enough!")

}

}

)

)

note how the class reports on itself:

currAccount

Generator for class "currentAccount":

##

Class fields:

##

Name: ref_number holder branch opening_date

Class: numeric character character Date

##

Name: account_type interest_rate balance

Class: character numeric numeric

##

Class Methods:

"debet", "credit", "import", ".objectParent", "usingMethods",

"show", "getClass", "untrace", "export", ".objectPackage",

"callSuper", "copy", "initFields", "getRefClass", "trace",

"field"

##

Reference Superclasses:

"account", "envRefClass"

© Dr. Philippe J.S. De Brouwer 129/256

Create instances and use the methods

We can now create accounts and use the methods supplied.
ph_acc <- currAccount$new(ref_number = 321654987,

holder = "Philippe",

branch = "LDN05",

opening_date = as.Date(Sys.Date()),

account_type = "current",

interest_rate = 0.01,

balance = 0

)

Now, we can start using the money and withdrawing money.
ph_acc$balance # after creating balance is 0:

[1] 0

ph_acc$debet(200) # impossible (not enough balance)

Error in ph_acc$debet(200): Not rich enough!

ph_acc$credit(200) # add 200 to the acount

ph_acc$balance # the money arrived in our account

[1] 200

ph_acc$debet(100) # this is possible

ph_acc$balance # the money is indeed gone

[1] 100

© Dr. Philippe J.S. De Brouwer 130/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 6: The Implementation of OO

↓

section 5:

Conclusions about the OO Implementation

© Dr. Philippe J.S. De Brouwer 131/256

Practical summary of the OO system in R

The OO system that R provides is unlike what other OO languages provide. In the first place, it offers not only a
method-dispatching system but also has a message-passing system. Secondly, it is of great importance that it is
possible to use R without even knowing that the OO system exists. In fact, for most of the following chapters in
this book, it is enough to know that the generic-function implementation of the OO logic exists.

© Dr. Philippe J.S. De Brouwer 132/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics
↓

chapter 7:

Tidy R with the Tidyverse

© Dr. Philippe J.S. De Brouwer 133/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 7: Tidy R with the Tidyverse

↓

section 1:

The Philosophy of the Tidyverse

© Dr. Philippe J.S. De Brouwer 134/256

The philosophy endoresed by the creators of the tidyverse

The developers of tidyverse promote1:

• Use existing and common data structures. So all the packages in the tidyverse will share a common S3
class types; this means that in general functions will accept data frames (or tibbles). More low-level
functions will work with the base R vector types.
• Reuse data structures in your code. The idea here is that there is a better option than always over-writing a

variable or create a new one in every line: pass on the output of one line to the next with a “pipe”: %>% . To
be accepted in the tidyverse, the functions in a package need to be able to use this pipe.2

• Keep functions concise and clear. For example, do not mix side-effects and transformations, function
names should be verbs where ever possible (unless they become too generic or meaningless of course),
and keep functions short (they do only one thing, but do it well).
• Embrace R as a functional programming language. This means that reflexes that you might have from say

C++, C#, python, PHP, etc., will have to be mended. This means for example that it is best to use immutable
objects and copy-on-modify semantics and avoid using the refclass model.
Use where possible the generic functions provided by S3 and S4. Avoid writing loops (such as repeat and
for but use the apply family of functions (or refer to the package purrr).
• Keep code clean and readable for humans. For example, prefer meaningful but long variable names over

short but meaningless ones, be considerate towards people using auto-complete in RStudio (so add an id in
the first and not last letters of a function name), etc.

© Dr. Philippe J.S. De Brouwer 135/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 7: Tidy R with the Tidyverse

↓

section 2:

Packages in the Tidyverse

© Dr. Philippe J.S. De Brouwer 136/256

The Core Tidyverse

Loading the tidyverse will report on which packages are included:

we assume that you installed the package before:

install.packages("tidyverse")

so load it:

library(tidyverse)

- Attaching packages -------------------------- tidyverse 1.3.1 -

v ggplot2 3.3.3 v purrr 0.3.4

v tibble 3.1.1 v dplyr 1.0.5

v tidyr 1.1.3 v stringr 1.4.0

v readr 1.4.0 v forcats 0.5.1

- Conflicts ---------------------------- tidyverse_conflicts() -

x purrr::compose() masks pryr::compose()

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

x purrr::partial() masks pryr::partial()

So, loading the library tidyverse, loads actually a series of other packages. The collection of these packages are
called “core-tidyverse.”

© Dr. Philippe J.S. De Brouwer 137/256

The packages in the core tidyverse i

• tidyr provides a set of functions that help you get to tidy up data and make adhering to the rules of tidy
data easier.
The idea of tidy data is really simple: it is data where every variable has its own column, and every column is
a variable.
• dplyr provides a grammar of data manipulation, providing a consistent set of verbs that solve the most

common data manipulation challenges.
• ggplot2 is a system to create graphics with a philosophy: it adheres to a “Grammar of Graphics” and is able

to create really stunning results at a reasonable price (it is a notch more abstract to use than the core-R
functionality).
• readr expands R’s standard3 functionality to read in rectangular4 data.

It is more robust, knows more data types and is faster than the core-R functionality.
• purrr is mentioned in the section about the OO model in R

It is a rather complete and consistent set of tools for working with functions and vectors. Using purrr it
should be possible to replace most loops with call to purr functions that will work faster.
• tibble is a new take on the data frame of core-R. It provides a new base type: tibbles.

Tibbles are in essence data frames, that do a little less (so there is less clutter on the screen and less
unexpected things happen), but rather give more feedback (show what went wrong instead of assuming that
you have read all manuals and remember everything).

© Dr. Philippe J.S. De Brouwer 138/256

The packages in the core tidyverse ii

• stringr expands the standard functions to work with strings and provides a nice coherent set of functions
that all start with str_ .
The package is built on top of stringi, which uses the ICU library that is written in C, so it is fast too.

• forcats provides tools to address common problems when working with categorical variables5.

© Dr. Philippe J.S. De Brouwer 139/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 7: Tidy R with the Tidyverse

↓

section 3:

Working with the Tidyverse

© Dr. Philippe J.S. De Brouwer 140/256

Creating a tibble

library(tidyverse)

x <- seq(from = 0, to = 2 * pi, length.out = 100)

tb <- tibble(x, sin(x), cos(x), cos(x) + sin(x))

© Dr. Philippe J.S. De Brouwer 141/256

Using a tibble i

Note how concise and relevant the output is:

print(tb)

A tibble: 100 x 4

x `sin(x)` `cos(x)` `cos(x) + sin(x)`

<dbl> <dbl> <dbl> <dbl>

1 0 0 1 1

2 0.0635 0.0634 0.998 1.06

3 0.127 0.127 0.992 1.12

4 0.190 0.189 0.982 1.17

5 0.254 0.251 0.968 1.22

6 0.317 0.312 0.950 1.26

7 0.381 0.372 0.928 1.30

8 0.444 0.430 0.903 1.33

9 0.508 0.486 0.874 1.36

10 0.571 0.541 0.841 1.38

... with 90 more rows

This does the same as for a data-frame:

plot(tb)

© Dr. Philippe J.S. De Brouwer 142/256

Using a tibble ii

x

−1
.0

−0
.5

0.0
0.5

1.0

●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●
●●●●

●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●

●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●●
●●●●●

0 1 2 3 4 5 6

−1
.5

−0
.5

0.5
1.5

●●
●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●

●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●

−1.0 −0.5 0.0 0.5 1.0

●●●●●●●●●●●●●●●
●●●

●●●
●●●
●●●
●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●

●●●
●●●●●●●●●●●●●●

sin(x)

●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●

●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●●●●

●●●
●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●

●●●
●●

●
●
●
●
●
●
●
●
●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●
●
●
●
●
●
●
●
●
●

cos(x)

−1.0 −0.5 0.0 0.5 1.0

●●
●●
●●

●●●
●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●●

−1.5 −0.5 0.5 1.5

0
1

2
3

4
5

6

●●●
●●●

●●●
●●●
●●●
●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●●
●●
●●
●●
●●

●●●●
●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●

−1
.0

−0
.5

0.0
0.5

1.0●●●●●●●●●●●●●●●●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●●●●●●●●●●●●●●●●●●●●●

●●●
●●
●●
●●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●
●●●●●●●●●●●●●●●●

cos(x) + sin(x)

Figure 6: A tibble plots itself like a data-frame.

Actually a tibble will still behave as a data frame:

is.data.frame(tb)

[1] TRUE

© Dr. Philippe J.S. De Brouwer 143/256

Piping with R

To start, consider a simple example:

t <- tibble("x" = runif(10))

t <- within(t, y <- 2 * x + 4 + rnorm(10, mean = 0, sd = 0.5))

This can also be written with the piping operator from magrittr:

t <- tibble("x" = runif(10)) %>%

within(y <- 2 * x + 4 + rnorm(10, mean = 0,sd = 0.5))

What R does behind the scenes, is feeding the output left of the pipe operator as main input right of the pipe
operator. This means that the following are equivalent:

1. pipe:

a %>% f()

2. pipe with shortened function:

a %>% f

3. is equivalent with:

f(a)

© Dr. Philippe J.S. De Brouwer 144/256

The dollar pipe

The Tidyverse only makes the %>% pipe available. So, to use the

special pipes, we need to load magrittr

library(magrittr)

lm2 <- tibble("x" = runif(10)) %>%

within(y <- 2 * x + 4 + rnorm(10, mean=0,sd=0.5)) %$%

lm(y ~ x)

summary(lm2)

##

Call:

lm(formula = y ~ x)

##

Residuals:

Min 1Q Median 3Q Max

-0.6101 -0.3534 -0.1390 0.2685 0.8798

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.0770 0.3109 13.115 1.09e-06 ***
x 2.2068 0.5308 4.158 0.00317 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

Residual standard error: 0.5171 on 8 degrees of freedom

Multiple R-squared: 0.6836,Adjusted R-squared: 0.6441

F-statistic: 17.29 on 1 and 8 DF, p-value: 0.003174

© Dr. Philippe J.S. De Brouwer 145/256

The T-pipe passes the previous output on i

library(magrittr)

t <- tibble("x" = runif(100)) %>%

within(y <- 2 * x + 4 + rnorm(10, mean=0, sd=0.5)) %T>%

plot(col="red") # The function plot does not return anything

so we used the %T>% pipe. Hence the result of

within() is passed to t.

lm3 <- t %$%

lm(y ~ x) %T>% # pass on the linear model for assignment

summary %T>% # further pass on the linear model

coefficients

tcoef <- lm3 %>% coefficients # we anyhow need the coefficients

Add the model (the solid line) to the previous plot:

abline(a = tcoef[1], b=tcoef[2], col="blue", lwd = 3)

© Dr. Philippe J.S. De Brouwer 146/256

The T-pipe passes the previous output on ii

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

3.0
3.5

4.0
4.5

5.0
5.5

6.0
6.5

x

y

Figure 7: A linear model fit on generated data to illustrate the piping command.

© Dr. Philippe J.S. De Brouwer 147/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics
↓

chapter 8:

Elements of Descriptive Statistics

© Dr. Philippe J.S. De Brouwer 148/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 8: Elements of Descriptive Statistics

↓

section 1:

Measures of Central Tendency

© Dr. Philippe J.S. De Brouwer 149/256

Arithmetic Mean

Definition 2 (Arithmetic mean)

x̄ =
N∑

n=1

P(x).x (for discrete distributions)

=

∫ +∞

−∞
x.f(x) dx (for continuous distributions)

The unbiased estimator of the mean for K observations xk is:

E[x̄] =
1
K

K∑
k=1

xk

© Dr. Philippe J.S. De Brouwer 150/256

The Mean in R

The mean of a vector:

x <- c(1,2,3,4,5,60)

mean(x)

[1] 12.5

Missing values will block the override the result:

x <- c(1,2,3,4,5,60,NA)

mean(x)

[1] NA

Missing values can be ignored with na.rm = TRUE:

mean(x, na.rm = TRUE)

[1] 12.5

This works also for a matrix:

M <- matrix(c(1,2,3,4,5,60), nrow=3)

mean(M)

[1] 12.5

© Dr. Philippe J.S. De Brouwer 151/256

Generalized Means

Definition 3 (f-mean)

x̄ = f−1

(
1
n
.

K∑
k=1

f(xk)

)

Popular choices for f() are:

• f(x) = x : arithmetic mean,
• f(x) = 1

x : harmonic mean,
• f(x) = xm: power mean,

• f(x) = ln x : geometric mean, so x̄ =
(∏K

k=1 xk
) 1

K

© Dr. Philippe J.S. De Brouwer 152/256

The Power Mean

One particular generalized mean is the power mean or Hölder mean. It is defined for a set of K positive numbers
xk by

x̄(m) =

(
1
n
·

K∑
k=1

xmk

) 1
m

by choosing particular values for m one can get the quadratic, arithmetic, geometric and harmonic means.

• m→∞: maximum of xk
• m = 2: quadratic mean
• m = 1: arithmetic mean
• m→ 0: geometric mean
• m = 1: harmonic mean
• m→ −∞: minimum of xk

© Dr. Philippe J.S. De Brouwer 153/256

The median

The median is the middle-value so that 50% of the observations are lower and 50% are higher.

x <- c(1:5,5e10,NA)

x

[1] 1e+00 2e+00 3e+00 4e+00 5e+00 5e+10 NA

median(x) # no meaningful result with NAs

[1] NA

median(x,na.rm = TRUE) # ignore the NA

[1] 3.5

Note how the median is not impacted by the outlier,

but the outlier dominates the mean:

mean(x, na.rm = TRUE)

[1] 8333333336

© Dr. Philippe J.S. De Brouwer 154/256

The mode

The mode is the value that has highest probability to occur. For a series of observations, this should be the one
that occurs most often. Note that the mode is also defined for variables that have no order-relation (even labels
such as “green,” “yellow,” etc. have a mode, but not a mean or median — without further abstraction or a
numerical representation).6

In R, the function mode() or storage.mode() returns a character string describing how a variable is stored. In
fact, R does not have a standard function to calculate mode, so let us create our own:
my_mode

Finds the first mode (only one)

Arguments:

v -- numeric vector or factor

Returns:

the first mode

my_mode <- function(v) {

uniqv <- unique(v)

tabv <- tabulate(match(v, uniqv))

uniqv[which.max(tabv)]

}

now test this function

x <- c(1,2,3,3,4,5,60,NA)

my_mode(x)

[1] 3

x1 <- c("relevant", "N/A", "undesired", "great", "N/A",

"undesired", "great", "great")

my_mode(x1)

[1] "great"

text from https://www.r-project.org/about.html

t <- "R is available as Free Software under the terms of the

Free Software Foundation's GNU General Public License in

source code form. It compiles and runs on a wide variety of

UNIX platforms and similar systems (including FreeBSD and

Linux), Windows and MacOS."

v <- unlist(strsplit(t,split=" "))

my_mode(v)

[1] "and"

© Dr. Philippe J.S. De Brouwer 155/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 8: Elements of Descriptive Statistics

↓

section 2:

Measures of Variation or Spread

© Dr. Philippe J.S. De Brouwer 156/256

Standard Deviation

Definition 4 (Standard deviation)

SD(X) =
√

VAR(X)

The estimator for standard deviation is:

ŜD(X) =

√√√√ 1
N− 1

N∑
n=1

(
Xn − X̄

)2

t <- rnorm(100, mean=0, sd=20)

var(t)

[1] 248.2647

sd(t)

[1] 15.75642

sqrt(var(t))

[1] 15.75642

sqrt(sum((t - mean(t))^2)/(length(t) - 1))

[1] 15.75642

© Dr. Philippe J.S. De Brouwer 157/256

Median absolute deviation

Definition 5 (mad)

mad(X) =
1

1.4826
median (|X −median(X)|)

mad(t)

[1] 14.54922

mad(t,constant=1)

[1] 9.813314

© Dr. Philippe J.S. De Brouwer 158/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 8: Elements of Descriptive Statistics

↓

section 3:

Measures of Covariation

© Dr. Philippe J.S. De Brouwer 159/256

Pearson correlation

Definition 6 (Pearson Correlation Coefficient)

ρXY =
covar(X, Y)

σXσY

=
(X − E[X])(Y − E[Y])√

(X − E[X])(Y − E[Y])

=: covar(x, y)

cor(mtcars$hp,mtcars$wt)

[1] 0.6587479

© Dr. Philippe J.S. De Brouwer 160/256

The Spearman correlation

The Spearman correlation is the correlation applied to the ranks of the data. It is one if an increase in the variable
X is always accompanied with an increase in variable Y.

cor(rank(df$x), rank(df$x_sq))

[1] 0

cor(rank(df$x), rank(df$x_abs))

[1] 0

cor(rank(df$x), rank(df$x_exp))

[1] 1

The Spearman correlation checks for a relationship that can be more general than only linear. It will be one if X
increases when Y increases.

© Dr. Philippe J.S. De Brouwer 161/256

Exercise: correlation

Question #6

Consider the vectors

1 x = c(1, 2, 33, 44) and y = c(22, 23, 100, 200),

2 x = c(1 : 10) and y = 2 ∗ x,

3 x = c(1 : 10) and y = exp(x),

Plot y in function of x. What is their Pearson correlation? What is their Spearman correlation? How do
you understand that?

© Dr. Philippe J.S. De Brouwer 162/256

Chi-Square test in R

Function use for chisq.test()

chisq.test(data)

where data is the data in form of a table containing the count value of the variables

© Dr. Philippe J.S. De Brouwer 163/256

An example for chisq.test()

we use the dataset mtcars from MASS

df <- data.frame(mtcars$cyl,mtcars$am)

chisq.test(df)

##

Pearson's Chi-squared test

##

data: df

X-squared = 25.077, df = 31, p-value = 0.7643

The chi-square test reports a p-value. This p-value is the probability that the correlations is actually insignificant.
It appears that in practice a correlation lower than 5% can be considered as insignificant. In this example, the
p-value is higher than 0.05, so there is no significant correlation.

© Dr. Philippe J.S. De Brouwer 164/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 8: Elements of Descriptive Statistics

↓

section 4:

Distributions

© Dr. Philippe J.S. De Brouwer 165/256

Distribution functions in R

• d: The pdf (probability density function)

• p: The cdf (cumulative probability density function)

• q: The quantile function
• r: The random number generator.

© Dr. Philippe J.S. De Brouwer 166/256

The Normal Distribution in R

R has four built-in functions to work with the normal distribution. They are described below.

• dnorm(x, mean, sd): The height of the probability distribution
• pnorm(x, mean, sd): The cumulative distribution function (the probability of the observation to be lower

than x)
• qnorm(p, mean, sd): Gives a number whose cumulative value matches the given probability value p
• rnorm(n, mean, sd): Generates normally distributed variables,

with

• x: A vector of numbers
• p: A vector of probabilities
• n: The number of observations(sample size)
• mean: The mean value of the sample data (default is zero)
• sd: The standard deviation (default is 1).

© Dr. Philippe J.S. De Brouwer 167/256

Illustrating the Normal Distribution i

obs <- rnorm(600,10,3)

hist(obs,col="khaki3",freq=FALSE)

x <- seq(from=0,to=20,by=0.001)

lines(x, dnorm(x,10,3),col="blue",lwd = 4)

Histogram of obs

obs

De
ns

ity

0 5 10 15 20

0.0
0

0.0
2

0.0
4

0.0
6

0.0
8

0.1
0

0.1
2

© Dr. Philippe J.S. De Brouwer 168/256

Illustrating the Normal Distribution ii

Figure 8: A comparison between a set of random numbers drawn from the normal distribution (khaki) and the theoretical shape
of the normal distribution in blue.

© Dr. Philippe J.S. De Brouwer 169/256

Case Study: Returns on the Stock Exchange i

In this simple illustration, we will compare the returns of the index S&P500 to the Normal distribution. The output
of the code below is in Figure 9 on slide 171.

library(MASS)

hist(SP500,col="khaki3",freq=FALSE,border="khaki3")

x <- seq(from=-5,to=5,by=0.001)

lines(x, dnorm(x,mean(SP500),sd(SP500)),col="blue",lwd=2)

© Dr. Philippe J.S. De Brouwer 170/256

Case Study: Returns on the Stock Exchange ii

Histogram of SP500

SP500

De
ns

ity

−8 −6 −4 −2 0 2 4

0.0
0.1

0.2
0.3

0.4

Figure 9: The same plot for the returns of the SP500 index seems acceptable, though there are outliers (where the normal
distribution converges fast to zero).

© Dr. Philippe J.S. De Brouwer 171/256

QQ-plots

library(MASS)

qqnorm(SP500,col="red"); qqline(SP500,col="blue")

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

● ●●

●

●

●●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●●
●

●

●
●

●
●●

●

●

●●
●●

●

● ●

●

●

●

●●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●
●●

●

●

● ●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●
●●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

● ●

●

●

●

●
●

●

●
●●

●
●

●
●

●

●●

●

●

●
●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●●

●●
●

●
●

●

●●●●
●

●

●

●

●●
●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●
● ●

●
●

●

●●

●
●

●

●

● ●
●

●

●

●

●
●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●
●

●●●●

●

●

●
●

●●
●

●
●●

●

●
●

●

●●

●
●●

●

●

●

●

●

●
●●

●

●●
●

●
●●

● ●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●●
●●

●

●
●

●

● ●●

●●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●●

●
●

●●
●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

●
●

●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●

●
●●

●
●

●
●

● ●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●
●

●●●

●

●

●●●●

●

●●

●

●●
●

●
●

●
●●●

●
●

●

●●

●

●
●

●
●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●
●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●
●

●
●

●●

●

●●

●
●

●

●
●●●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●●

●

●

●●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●●
●

●

●

●

●●●●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●● ●

●
●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●●

●

●●

●

●

●

●●

●
●

●

●

●
●

●
●

●●

●

●●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●●

●

●

●●
●●● ● ●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●●

●●

●

●

●●
●

●

●

●●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●●●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−6
−4

−2
0

2
4

Normal Q−Q Plot

Theoretical Quantiles

Sa
mp

le
Qu

an
tile

s

Figure 10: A Q-Q plot is a good way to judge if a set of observations is normally distributed or not.

© Dr. Philippe J.S. De Brouwer 172/256

The Binomial Distribution in R

As for all distributions, R has four in-built functions to generate binomial distribution:

• dbinom(x, size, prob): The density function
• pbinom(x, size, prob): The cumulative probability of an event
• qbinom(p, size, prob): Gives a number whose cumulative value matches a given probability value
• rbinom(n, size, prob): Generates random variables following the binomial distribution.

Following parameters are used:

• x: A vector of numbers
• p: A vector of probabilities
• n: The number of observations
• size: The number of trials
• prob The probability of success of each trial

© Dr. Philippe J.S. De Brouwer 173/256

An Example of the Binomial Distribution i

The example below illustrates the biniomial distribution and generates the plot in Figure 11 on slide 175.

Probability of getting 5 or less heads from 10 tosses of

a coin.

pbinom(5,10,0.5)

[1] 0.6230469

visualize this for one to 10 numbers of tosses

x <- 1:10

y <- pbinom(x,10,0.5)

plot(x,y,type="b",col="blue", lwd = 3,

xlab="Number of tails",

ylab="prob of maxium x tails",

main="Ten tosses of a coin")

© Dr. Philippe J.S. De Brouwer 174/256

An Example of the Binomial Distribution ii

●

●

●

●

●

●

●

● ● ●

2 4 6 8 10

0.0
0.2

0.4
0.6

0.8
1.0

Ten tosses of a coin

Number of tails

pro
b o

f m
ax

ium
 x

tai
ls

Figure 11: The probability to get maximum x tails when flipping a fair coin, illustrated with the binomial distribution.

© Dr. Philippe J.S. De Brouwer 175/256

How many heads should we at least expect (with a probability

of 0.25) when a coin is tossed 10 times.

qbinom(0.25,10,1/2)

[1] 4

© Dr. Philippe J.S. De Brouwer 176/256

Generate random variables

Find 20 random numbers of tails from and event of 10 tosses

of a coin

rbinom(20,10,.5)

[1] 5 7 2 6 7 4 6 7 3 2 5 9 5 9 5 5 5 5 5 6

© Dr. Philippe J.S. De Brouwer 177/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 8: Elements of Descriptive Statistics

↓

section 5:

Creating an Overview of Data Characteristics

© Dr. Philippe J.S. De Brouwer 178/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics
↓

chapter 9:

Visualisation Methods

© Dr. Philippe J.S. De Brouwer 179/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 9: Visualisation Methods

↓

section 1:

Scatterplots

© Dr. Philippe J.S. De Brouwer 180/256

Making scatterplots

Function use for plot() – for a scatterplot

plot(x, y, main, xlab, ylab, xlim, ylim, axes, ...) with
• x: the data set for the horizontal axis
• y: the data set for the vertical axis
• main: the tile of the graph
• xlab: the title of the x-axis
• ylab: the title of the x-axis
• xlim: the range of values on the x-axis
• ylim: the range of values on the y-axis
• pch: the display symbol
• axes: indicates whether both axes should be drawn on the plot.

© Dr. Philippe J.S. De Brouwer 181/256

Plot characters

●

●

Some pch arguments
0 ● 1 2 3 4

5 6 7 8 9

● 10 11 12 ● 13 14

15 ● 16 17 18 ● 19

● 20 ● 21 22 23 24

25 A A B B a a b b

Figure 12: Some plot characters. Most other characters will just plot themselves.

© Dr. Philippe J.S. De Brouwer 182/256

Scatterplot example i

Import the data:

library(MASS)

To make this example more interesting, we convert mpg to l/100km

mpg2l

Converts miles per gallon into litres per 100 km

Arguments:

mpg -- numeric -- fuel consumption in MPG

Returns:

Numeric -- fuel consumption in litres per 100 km

mpg2l <- function(mpg = 0) {

100 * 3.785411784 / 1.609344 / mpg}

mtcars$l <- mpg2l(mtcars$mpg)

plot(x = mtcars$hp,y = mtcars$l, xlab = "Horse Power",

ylab = "L per 100km", main = "Horse Power vs Milage",

pch = 22, col="red", bg="yellow")

© Dr. Philippe J.S. De Brouwer 183/256

Scatterplot example ii

50 100 150 200 250 300

10
15

20

Horse Power vs Milage

Horse Power

L p
er

10
0k

m

Figure 13: A scatter-plot needs an x and a y variable.

© Dr. Philippe J.S. De Brouwer 184/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 9: Visualisation Methods

↓

section 2:

Line Graphs

© Dr. Philippe J.S. De Brouwer 185/256

Making line plots

Function use for plot() – for line plots

plot(x, type , main, xlab, ylab, xlim, ylim, axes, sub, asp ...) with
• x: the data set for the horizontal axis
• y: the data set for the vertical axis (optional)
• type: indicates the type of plot to be made:

• ’"p"’ for *p*oints,
• ’"l"’ for *l*ines,
• ’"b"’ for *b*oth,
• ’"c"’ for the lines part alone of ’"b"’,
• ’"o"’ for both ’*o*verplotted’,
• ’"h"’ for ’*h*istogram’ like (or ’high-density’) vertical lines,
• ’"s"’ for stair *s*teps,
• ’"S"’ for other *s*teps, see ’Details’ in the documentation,
• ’"n"’ for no plotting.

• main: the tile of the graph
• xlab: the title of the x-axis
• ylab: the title of the x-axis
• xlim: the range of values on the x-axis
• ylim: the range of values on the y-axis
• axes: indicates whether both axes should be drawn on the plot.
• sub: the sub-title
• asp: the y/x aspect ratio

© Dr. Philippe J.S. De Brouwer 186/256

A line-plot example i

Prepare the data:

years <- c(2000,2001,2002,2003,2004,2005)

sales <- c(2000,2101,3002,2803,3500,3450)

plot(x = years,y = sales, type = 'b',

xlab = "Years", ylab = "Sales in USD",

main = "The evolution of our sales")

points(2004,3500,col="red",pch=16) # highlight one point

text(2004,3400,"top sales") # annotate the highlight

© Dr. Philippe J.S. De Brouwer 187/256

A line-plot example ii

●

●

●

●

●

●

2000 2001 2002 2003 2004 2005

20
00

25
00

30
00

35
00

The evolution of our sales

Years

Sa
les

 in
 U

SD

●

top sales

Figure 14: A line plot of the type b, with one dot highlighted.

© Dr. Philippe J.S. De Brouwer 188/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 9: Visualisation Methods

↓

section 3:

Pie Charts

© Dr. Philippe J.S. De Brouwer 189/256

Pie charts

Function use for pie()

pie(x, labels = names(x), edges = 200, radius = 0.8, clockwise = FALSE, init.angle =

if(clockwise) 90 else 0, density = NULL, angle = 45, col = NULL, border = NULL, lty

= NULL, main = NULL, ...)

where the most important parameters are
• x: a vector of non-negative numerical quantities. The values in ’x’ are displayed as the areas of pie

slices
• labels: strings with names for the slices
• radius: the radius of the circle of the chart (value between âĹŠ1 and +1)
• main: indicates the title of the chart
• col: the colour palette
• clockwise: a logical value indicating if the slices are drawn clockwise or anti clockwise

© Dr. Philippe J.S. De Brouwer 190/256

Pie chart example i

x <- c(10, 20, 12) # Create data for the graph

labels <- c("good", "average", "bad")

pie(x,labels) # Show in the R Graphics screen

© Dr. Philippe J.S. De Brouwer 191/256

Pie chart example ii

good

average

bad

Figure 15: A pie-chart in R.

© Dr. Philippe J.S. De Brouwer 192/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 9: Visualisation Methods

↓

section 4:

Bar Charts

© Dr. Philippe J.S. De Brouwer 193/256

The function barplot()

Function use for barplot()

barplot(height, width=1, xlab=NULL, ylab=NULL, main=NULL, names.arg=NuLL, col=NULL,

...)

Some parameters:
• height: is the vector or matrix containing numeric values used in chart
• xlab: the label for the x-axis
• ylab: is the label for y-axis
• main: is the title of the chart
• names.arg: is a vector of names of each bar
• col: is used to give colors to the bars in the graph.

© Dr. Philippe J.S. De Brouwer 194/256

An example for barplot() i

sales <- c(100,200,150,50,125)

regions <- c("France", "Poland", "UK", "Spain", "Belgium")

barplot(sales, width=1,

xlab="Regions", ylab="Sales in EUR",

main="Sales 2016", names.arg=regions,

border="blue", col="brown")

© Dr. Philippe J.S. De Brouwer 195/256

An example for barplot() ii

France Poland UK Spain Belgium

Sales 2016

Regions

Sa
les

 in
 E

UR

0
50

10
0

15
0

20
0

Figure 16: A standard bar-chart based on a vector.

© Dr. Philippe J.S. De Brouwer 196/256

Stacked bar charts

Create the input vectors:

colours <- c("orange","green","brown")

regions <- c("Mar","Apr","May","Jun","Jul")

product <- c("License","Maintenance","Consulting")

Create the matrix of the values.

values <- matrix(c(20,80,0,50,140,10,50,80,20,10,30,

10,25,60,50), nrow = 3, ncol = 5, byrow = FALSE)

Create the bar chart:

barplot(values, main = "Sales 2016",

names.arg = regions, xlab = "Region",

ylab = "Sales in EUR", col = colours)

Add the legend to the chart:

legend("topright", product, cex = 1.3, fill = colours)

Mar Apr May Jun Jul

Sales 2016

Region

Sa
les

 in
 E

UR

0
50

10
0

15
0

20
0

License
Maintenance
Consulting

Figure 17: A bar-chart based on a matrix will produce stacked bars. Note how nicely this plot conveys the seasonal trend in the
data.

© Dr. Philippe J.S. De Brouwer 197/256

Barplots With Total of 100 Procent

We reuse the matrix 'values' from previous example.

Add extra space to right of plot area by changeing clipping to figure:

par(mar = c(5, 4, 4, 8) + 0.1, # default margin was c(5, 4, 4, 2) + 0.1

xpd = TRUE) # TRUE to restrict all plotting to the plot region

Create the plot with all totals coerced to 1.0 with prop.table():

barplot(prop.table(values, 2), main = "Sales 2016",

names.arg = regions, xlab = "Region",

ylab = "Sales in EUR", col = colours)

Add the legend, but move it to the right with inset:

legend("topright", product, cex = 1.0, inset=c(-0.3,0), fill = colours,

title="Business line")

Mar Apr May Jun Jul

Sales 2016

Region

Sa
les

 in
 E

UR

0.0
0.2

0.4
0.6

0.8
1.0 Business line

License
Maintenance
Consulting

Figure 18: A boxplot where the total of each bar equals 100%. Note how the seasonal trend is obscured in this plot, but how it now
tells the story of how the consulting business is growing and the maintenance business, relatively, cannot keep up wih that
growth.

© Dr. Philippe J.S. De Brouwer 198/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 9: Visualisation Methods

↓

section 5:

Boxplots

© Dr. Philippe J.S. De Brouwer 199/256

Boxplots

Function use for boxplot()

boxplot(formula, data = NULL,notch = FALSE, varwidth = FALSE, names, main = NULL,

... with: Following is the description of the parameters used âĹŠ
• formula: a vector or a formula.
• data: the data frame.
• notch: a logical value (set to TRUE to draw a notch)
• varwidth: a logical value (set to true to draw width of the box proportionate to the sample size)
• names: the group labels which will be printed under each boxplot.
• main: the title to the graph.
• range: this number determines how far the plot whiskers can reach. If it is positive, then the

whiskers extend to the most extreme data point which is no more than “range” times the
interquartile range from the box. If range is set to 0, then the whiskers extend to the data extremes.

© Dr. Philippe J.S. De Brouwer 200/256

A boxplot example i

To illustrate boxplots, we can consider the dataset ships (from the library “MASS”), and use the following code to
generate Figure 19 on slide 202:

library(MASS)

boxplot(mpg ~ cyl,data=mtcars,col="khaki3",

main="MPG by number of cylinders")

© Dr. Philippe J.S. De Brouwer 201/256

A boxplot example ii

●●

4 6 8

10
15

20
25

30

MPG by number of cylinders

cyl

mp
g

Figure 19: Boxplots show information about the central tendency (median) as well as the spread of the data.

© Dr. Philippe J.S. De Brouwer 202/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 9: Visualisation Methods

↓

section 6:

Violin Plots

© Dr. Philippe J.S. De Brouwer 203/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 9: Visualisation Methods

↓

section 7:

Histograms

© Dr. Philippe J.S. De Brouwer 204/256

The function hist()

Function use for hist()

hist(x, breaks = "Sturges", freq = NULL, probability = !freq, include.lowest =

TRUE, right = TRUE, density = NULL, angle = 45, col = NULL, border = NULL, main =

paste("Histogram of" , deparse(substitute(x))), xlim = range(breaks), ylim = NULL,

xlab = deparse(substitute(x)), ylab, axes = TRUE, plot = TRUE, labels = FALSE,

nclass = NULL, warn.unused = TRUE, ...) with the most important parameters:
• x: the vector containing numeric values to be used in the histogram
• main: the title of the chart
• col: the color of the bars
• border: the border color of each bar
• xlab: the title of the x-axis
• xlim: the range of values on the x-axis
• ylim: the range of values on the y-axis
• breaks: one of

• a vector giving the breakpoints between histogram cells,
• a function to compute the vector of breakpoints,
• a single number giving the number of cells for the histogram,
• a character string naming an algorithm to compute the number of cells,
• a function to compute the number of cells

• freq: TRUE for frequencies, FALSE for probability density
© Dr. Philippe J.S. De Brouwer 205/256

Histogram example i

library(MASS)

incidents <- ships$incidents

figure 1: with a rug and fixed breaks

hist(incidents,

col=c("red","orange","yellow","green","blue","purple"))

rug(jitter(incidents)) # add the tick-marks

© Dr. Philippe J.S. De Brouwer 206/256

Histogram example ii

Histogram of incidents

incidents

Fr
eq

ue
nc

y

0 10 20 30 40 50 60

0
5

10
15

20
25

30

Figure 20: A histogram in R is produced by the hist() function.

© Dr. Philippe J.S. De Brouwer 207/256

Histogram example iii

figure 2: user-defined breaks for the buckets

hist(incidents,

col=c("red","orange","yellow","green","blue","purple"),

ylim=c(0,0.3), breaks=c(0,2,5,10,20,40,80),freq=FALSE)

Histogram of incidents

incidents

De
ns

ity

0 20 40 60 80

0.0
0

0.0
5

0.1
0

0.1
5

0.2
0

0.2
5

0.3
0

© Dr. Philippe J.S. De Brouwer 208/256

Histogram example iv

Figure 21: In this histogram, the breaks are changed, and the y-axes is now calibrated as a probability. Note that leaving
freq=TRUE would give the wrong impression that there are more observations in the wider brackets.

© Dr. Philippe J.S. De Brouwer 209/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 9: Visualisation Methods

↓

section 8:

Plotting Functions

© Dr. Philippe J.S. De Brouwer 210/256

Plotting Functions i

While the function plot() allows to draw functions, there is a specific function curve() that draws functions. The
following code illustrate this function by creating Figure 22 on slide 212 and makes also clear how to add
mathematical expressions to the plot:

fn1 <- function(x) sqrt(1-(abs(x)-1)^2)

fn2 <- function(x) -3*sqrt(1-sqrt(abs(x))/sqrt(2))

curve(fn1,-2,2,ylim=c(-3,1),col="red",lwd = 4,

ylab = expression(sqrt(1-(abs(x)-1)^2) +++ fn_2))

curve(fn2,-2,2,add=TRUE,lw=4,col="red")

text(0,-1,expression(sqrt(1-(abs(x)-1)^2)))

text(0,-1.25,"++++")

text(0,-1.5,expression(-3*sqrt(1-sqrt(abs(x))/sqrt(2))))

© Dr. Philippe J.S. De Brouwer 211/256

Plotting Functions ii

−2 −1 0 1 2

−3
−2

−1
0

1

x

1−
(x−

1)2
++

+fn
_2

1 − (x − 1)2

++++

− 3 1 − x 2

Figure 22: Two line plots plotted by the function curve().

© Dr. Philippe J.S. De Brouwer 212/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 9: Visualisation Methods

↓

section 9:

Maps and Contour Plots

© Dr. Philippe J.S. De Brouwer 213/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 9: Visualisation Methods

↓

section 10:

Heat-maps

© Dr. Philippe J.S. De Brouwer 214/256

Heatmap i

d = as.matrix(mtcars, scale = "none")

heatmap(d)

cy
l

am vs

ca
rb wt dra

t

ge
ar l

qs
ec mp
g hp dis
p

Maserati Bora
Chrysler Imperial
Lincoln Continental
Cadillac Fleetwood
Hornet Sportabout
Pontiac Firebird
Ford Pantera L
Camaro Z28
Duster 360
Valiant
Hornet 4 Drive
AMC Javelin
Dodge Challenger
Merc 450SLC
Merc 450SE
Merc 450SL
Honda Civic
Toyota Corolla
Fiat X1−9
Fiat 128
Ferrari Dino
Merc 240D
Mazda RX4
Mazda RX4 Wag
Merc 280
Merc 280C
Lotus Europa
Merc 230
Volvo 142E
Datsun 710
Porsche 914−2
Toyota Corona

Figure 23: Heatmap for the “mtcars” data.

© Dr. Philippe J.S. De Brouwer 215/256

Heatmap Scaling i

heatmap(d,scale="column")

cy
l

am vs

ca
rb wt dra

t

ge
ar l

qs
ec mp
g hp dis
p

Maserati Bora
Chrysler Imperial
Lincoln Continental
Cadillac Fleetwood
Hornet Sportabout
Pontiac Firebird
Ford Pantera L
Camaro Z28
Duster 360
Valiant
Hornet 4 Drive
AMC Javelin
Dodge Challenger
Merc 450SLC
Merc 450SE
Merc 450SL
Honda Civic
Toyota Corolla
Fiat X1−9
Fiat 128
Ferrari Dino
Merc 240D
Mazda RX4
Mazda RX4 Wag
Merc 280
Merc 280C
Lotus Europa
Merc 230
Volvo 142E
Datsun 710
Porsche 914−2
Toyota Corona

Figure 24: Heatmap for the “mtcars” data with all columns rescaled

© Dr. Philippe J.S. De Brouwer 216/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 9: Visualisation Methods

↓

section 11:

Text Mining

© Dr. Philippe J.S. De Brouwer 217/256

generating word clouds in R

If neccesary first download the packages:

install.packages("tm") # text mining

install.packages("SnowballC") # text stemming

install.packages("RColorBrewer") # colour palettes

install.packages("wordcloud") # word-cloud generator

Then, we load the packages:

Then load the packages:

library("tm")

library("SnowballC")

library("RColorBrewer")

library("wordcloud")

© Dr. Philippe J.S. De Brouwer 218/256

Step 1: Importing the Text

In this example we use a text version of this very book.

You will need to use your own text file in the line below:

t <- readLines("../../data/r-book.txt")

Then create a corpus of text

doc <- Corpus(VectorSource(t))

© Dr. Philippe J.S. De Brouwer 219/256

Step 2: Cleaning the Text

The file has still a lot of special characters

e.g. the following replaces '\', '#', and '|' with space:

toSpace <- content_transformer(function (x , pattern)

gsub(pattern, " ", x))

doc <- tm_map(doc, toSpace, "\\\\")

doc <- tm_map(doc, toSpace, "#")

doc <- tm_map(doc, toSpace, "\\|")

Note that the backslash needs to be escaped in R

© Dr. Philippe J.S. De Brouwer 220/256

Step 3: Build a Term-document Matrix

dtm <- TermDocumentMatrix(doc)

m <- as.matrix(dtm)

v <- sort(rowSums(m),decreasing=TRUE)

d <- data.frame(word = names(v),freq=v)

head(d, 10)

word freq

function function 378

data data 240

use use 190

model model 180

example example 153

code code 142

package package 125

company company 116

method method 103

market market 96

© Dr. Philippe J.S. De Brouwer 221/256

Step 4: Generate the Word-cloud i

Finally, we can generate the word-could and produce Figure 25 on slide 223.

set.seed(1879)

wordcloud(words = d$word, freq = d$freq, min.freq = 10,

max.words=200, random.order=FALSE, rot.per=0.35,

colors=brewer.pal(8, "Dark2"))

© Dr. Philippe J.S. De Brouwer 222/256

Step 4: Generate the Word-cloud ii

fu
nc

tio
n

data
use

m
od

elexample

co
de

package

co
m

pa
ny

m
et

ho
d

m
ar

ke
t

used

rate

tree

risk

re
tu

rn following
different

spark

good

via

see

using

plot

ca
sh

time

as
se

t

wo
rk

wa
y

now

note

many

assetsmake

results

da
ta

se
t

number

tw
o

re
gr

es
sio

n

al
lo

ws

calculate

in
fo

rm
at

io
n

maturity

ru
n

available

bo
ok

se
t

performance

stock

clu
st

erfu
tu

re
ratio

ob
se

rv
at

io
ns

learning

create

te
st

means

decision

type

case

scale

fit

m
at

rix
ca

pi
ta

l

follows

ob
je

ct

pa
ra

m
et

er

underlying

fre
e

provides
much

times

file

order

linear

validation

co
m

pa
ni

es

ge
t

vector

interest

makes

se
ct

io
n

called

long
library

options

models

re
su

lt

line

true

us
ua

lly

right

just

bu
y

flow

new
solution

alternative

best
computer

variable

sh
or

t

mean
classification

fin
d

values

important

re
al

ly

point

machine

methods

sp
ar

kr

age

positive

dataframe

average

di
ffe

re
nc

e

sim
ila

r

mtcars

date

dividend

in
tri

ns
ic

strike

le
ve

l course

since

large

sense

cross

buyer

earnings

gr
ow

th

given

lot

needs

split

eq
ui

ty

done

ad
d

nu
m

er
ic

ra
th

er

node

ap
ac

he

general

us
ef

ul
assume

measure

distribution

system
certain

be
co

m
es

rstudio

sh
ar

es

exchange

another

better

wo
rk

s
cla

ss

even

parallel investment

dividends

calculations

problem

amount

variables

show

ea
sy

start

st
ill

specific
sum

working

distributed

process

expected

kernel

look

preference

article

error

pr
es

en
t

false

trees

ou
tp

uttotal
sm

al
l

bond

capm

gpu

ha
do

op

co
ns

id
er

cle
ar

based

higher

default

idea

programming

lis
t

operating

po
sit

io
n

Figure 25: A word-could for the text of this book. This single image gives a good idea of what this book is about.

© Dr. Philippe J.S. De Brouwer 223/256

Word Associations in R i

findFreqTerms(dtm, lowfreq = 150)

[1] "example" "model" "function" "data" "use"

One can analyze the association between frequent terms (i.e., terms which correlate) using findAssocs()
function. function findAssocs() of the same package can identifey the functions

© Dr. Philippe J.S. De Brouwer 224/256

Word Associations in R ii

e.g. for the word "function"

findAssocs(dtm, terms = "function", corlimit = 0.15)

$`function`

recycled list

0.27 0.25

arguments argument

0.24 0.22

sequence strings

0.22 0.22

second dispatcher

0.21 0.21

calling functionality

0.21 0.20

via code

0.19 0.19

unique calls

0.19 0.19

element clusterapply

0.18 0.18

work allows

0.17 0.17

run cluster

0.17 0.17

apply wrapped

0.17 0.16

shorter dispatch

0.16 0.16

except note

0.16 0.15

density cosine

0.15 0.15

currently indicator

0.15 0.15

summed dynamically

0.15 0.15

sparkdataframe cast

0.15 0.15

foresees join

0.15 0.15

windowpartitionbypclass binned

0.15 0.15

elementwise exception

0.15 0.15

sqltransformer transformers

0.15 0.15

certainty confirm

0.15 0.15

nas slows

0.15 0.15

collapsedeparsef converts

0.15 0.15

deparse bquote

0.15 0.15

messed nicer

0.15 0.15

plotmath titles

0.15 0.15

© Dr. Philippe J.S. De Brouwer 225/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 9: Visualisation Methods

↓

section 12:

Colours in R

© Dr. Philippe J.S. De Brouwer 226/256

R has 657 coulours built-in and ready to use

This list of colours can be used to search for a colour whose name contains a certain string.

find colour numbers that contain the word 'khaki'

grep("khaki",colours())

[1] 83 382 383 384 385 386

find the names of those colours

colors()[grep("khaki",colours())]

[1] "darkkhaki" "khaki" "khaki1" "khaki2" "khaki3"

[6] "khaki4"

R allows also to define colours in different ways: named colours, RGB colours, hexadecimal colours, and it also
allows to convert the one to the other.

extract the rgb value of a named colour

col2rgb("khaki3")

[,1]

red 205

green 198

blue 115

© Dr. Philippe J.S. De Brouwer 227/256

Visualising all the built-in colours i

N <- length(colours()) # this is 657

df <- data.frame(matrix(1:N, nrow=73, byrow = TRUE))

image(1:(ncol(df)), 1:(nrow(df)), as.matrix(t(df)),

col = colours(),

xlab = "X", ylab = "Y")

© Dr. Philippe J.S. De Brouwer 228/256

Visualising all the built-in colours ii

2 4 6 8

10
20

30
40

50
60

70

X

Y

Figure 26: A visualisation of all built in colours in R. Note that the number of the colour can be determined as by taking the y-value
minus one times nine plus the x-value.

The plot is in Figure 26 on slide 229. In this plot, the number of the colour can be found by the following formula:

nbr = (y − 1)9 + x

With y, the value on the y-axis, and x, the number on the x-axis. Once the formula is applied, the name of the
colour is the colour with that number in R’s list. Here are a few examples:
colours()[(3 - 1) * 9 + 8]

[1] "blue"

colours()[(50 - 1) * 9 + 1]

[1] "lightsteelblue4"

© Dr. Philippe J.S. De Brouwer 229/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics
↓

chapter 10:

Time Series Analysis

© Dr. Philippe J.S. De Brouwer 230/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 10: Time Series Analysis

↓

section 1:

Time Series in R

© Dr. Philippe J.S. De Brouwer 231/256

Time series

The time series object is created by using the ts() function.

Function use for ts()

ts(data = NA, start = 1, end = numeric(), frequency = 1,

deltat = 1, ts.eps = getOption("ts.eps"), class = ,

names =)

with
• data: A vector or matrix containing the values used in the time series.
• start: The start time for the first observation in time series.
• end: The end time for the last observation in time series.
• frequency The number of observations per unit time.

• frequency = 12: pegs the data points for every month of a year.
• frequency = 4: pegs the data points for every quarter of a year.
• frequency = 6: pegs the data points for every 10 minutes of an hour.
• frequency = 24 × 6: pegs the data points for every 10 minutes of a day.

Except the parameter "data" all other parameters are optional. To check if an object is a time series, we
can use the function is.ts(), and as.ts(x) will coerce the variable x into a time series object.

© Dr. Philippe J.S. De Brouwer 232/256

Time series example

library(MASS)

The SP500 is available as a numeric vector:

str(SP500)

num [1:2780] -0.259 -0.865 -0.98 0.45 -1.186 ...

Now, we convert it to a time series object with the function ts():

Convert it to a time series object.

SP500_ts <- ts(SP500,start = c(1990,1),frequency = 260)

© Dr. Philippe J.S. De Brouwer 233/256

plot(SP500_ts)

Time

SP
50

0_
ts

1990 1992 1994 1996 1998 2000

−6
−4

−2
0

2
4

Figure 27: The standard plot for a time series object for the returns of the SP500 index in the 1990s.

© Dr. Philippe J.S. De Brouwer 234/256

Multiple time series in one object

val = c(339.97)

for (k in 2:length(SP500)){

val[k] = val[k-1] * (SP500[k-1] / 100 + 1)

}

Convert both series to a matrix:

M <- matrix(c(SP500,val),nrow=length(SP500))

Convert the matrix to a time series object:

SP <- ts(M, start=c(1990,1),frequency=260)

colnames(SP) <- c("Daily Return in Pct","Value")

© Dr. Philippe J.S. De Brouwer 235/256

plot(SP, type = "l", main = "SP500 in the 1990s")

−6
−4

−2
0

2
4

Da
ily

 R
etu

rn
in

Pc
t

40
0

60
0

80
0

12
00

1990 1992 1994 1996 1998 2000

Va
lue

Time

SP500 in the 1990s

Figure 28: The standard plot functionality of time series will keep the z-axis for both variables the same (even use one common
axis).

© Dr. Philippe J.S. De Brouwer 236/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics

↓

chapter 10: Time Series Analysis

↓

section 2:

Forecasting

© Dr. Philippe J.S. De Brouwer 237/256

Moving average i

In absence of a clear and simple trend (such as a linear or exponential trend) the moving average is a versatile
tool. it is a non-parametric model that simply “forecasts” the near future based on the average observations of
the near past.

Example (– GDP data)

When it comes to macro economical data, the World Bank is a class apart. It’s website
https://data.worldbank.org has thousands of indicators that can be downloaded and analysed. Their data
catalogue is here: https://datacatalog.worldbank.org. We have downloaded the GDP data of Poland and
stored it in a csv-file on our hard-disk. In the example that we use to explain the concepts in the following
sections, we will use that data.

To start, we load in the data stored in a csv file on our local hard-drive, and plot the data in Figure 29 on slide 239

g <- read.csv('../../data/gdp/gdp_pol_sel.csv') # get the data

attach(g) # the names of the data are now always available

plot(year, GDP.per.capitia.in.current.USD, type='b',

lwd = 3, xlab = 'Year', ylab = 'Polish GDP per Capita in USD')

© Dr. Philippe J.S. De Brouwer 238/256

https://data.worldbank.org
https://datacatalog.worldbank.org

Moving average ii

●

●
● ●

●

●

● ●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

1990 1995 2000 2005 2010 2015

20
00

40
00

60
00

80
00

10
00

0
12

00
0

14
00

0

Year

Po
lis

h G
DP

 pe
r C

ap
ita

 in
 U

SD

Figure 29: A first plot to show the data before we start. This will allow us to select a suitable method for forecasting.

© Dr. Philippe J.S. De Brouwer 239/256

require(forecast)

make the forecast with the moving average (ma)

g.data <- ts(g$GDP.per.capitia.in.current.USD,start=c(1990))

g.movav = forecast(ma(g.data, order=3), h=5)

© Dr. Philippe J.S. De Brouwer 240/256

show the result:

plot(g.movav,col="blue",lw=4,

main="Forecast of GDP per capita of Poland",

ylab="Income in current USD")

lines(year,GDP.per.capitia.in.current.USD,col="red",type='b')

Forecast of GDP per capita of Poland

Inc
om

e i
n c

urr
en

t U
SD

1990 1995 2000 2005 2010 2015 2020

50
00

10
00

0
15

00
0

20
00

0

●

●
● ●

●

●
● ●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 30: A forecast based on moving average.

© Dr. Philippe J.S. De Brouwer 241/256

Testing the Accuracy of Forecasts – Backtesting

Testing accuracy of the model by sampling:

g.ts.tst <- ts(g.data[1:20],start=c(1990))

g.movav.tst <- forecast(ma(g.ts.tst,order=3),h=5)

accuracy(g.movav.tst, g.data[22:26])

ME RMSE MAE MPE MAPE

Training set 32.0006 342.1641 217.8447 0.7619824 3.229795

Test set -1206.5948 1925.5738 1527.0227 -9.2929075 11.599237

MASE ACF1

Training set 0.3659014 -0.06250102

Test set 2.5648536 NA

© Dr. Philippe J.S. De Brouwer 242/256

plot(g.movav.tst,col="blue",lw=4,

main="Forecast of GDP per capita of Poland",

ylab="Income in current USD")

lines(year, GDP.per.capitia.in.current.USD, col="red",type='b')

Forecast of GDP per capita of Poland

Inc
om

e i
n c

urr
en

t U
SD

1995 2000 2005 2010

50
00

10
00

0
15

00
0

20
00

0
25

00
0

●
● ● ●

●

●
● ●

● ● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

Figure 31: A backtest for our forecast.

© Dr. Philippe J.S. De Brouwer 243/256

Testing the accuracy of forecasts – backtesting

In the forecast package, there is an automated forecasting function that will run through possible models and
select the most appropriate model give the data. This could be an auto regressive model of the first order (AR(1)),
an ARIMA model (autoregressive integrated moving average model) with the right values for p, d, and q, or even
something else that is more appropriate. The following code uses those functions to plot a forecast in figure
Figure ?? on slide ??.
train = ts(g.data[1:20],start=c(1990))

test = ts(g.data[21:26],start=c(2010))

arma_fit <- auto.arima(train)

arma_forecast <- forecast(arma_fit, h = 6)

arma_fit_accuracy <- accuracy(arma_forecast, test)

arma_fit; arma_forecast; arma_fit_accuracy

Series: train

ARIMA(0,1,0) with drift

##

Coefficients:

drift

515.5991

s.e. 231.4786

##

sigma^2 estimated as 1074618: log likelihood=-158.38

AIC=320.75 AICc=321.5 BIC=322.64

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

2010 12043.19 10714.69 13371.70 10011.419 14074.97

2011 12558.79 10680.00 14437.58 9685.431 15432.15

2012 13074.39 10773.35 15375.43 9555.257 16593.52

2013 13589.99 10932.98 16247.00 9526.444 17653.54

2014 14105.59 11134.96 17076.22 9562.406 18648.77

2015 14621.19 11367.03 17875.35 9644.381 19598.00

ME RMSE MAE MPE MAPE

Training set 0.06078049 983.4411 602.2902 -2.3903997 8.585820

Test set 54.36338215 1036.0989 741.8024 0.1947719 5.668504

MASE ACF1 Theil's U

Training set 0.7612222 -0.03066223 NA

Test set 0.9375488 0.04756832 0.9928242

© Dr. Philippe J.S. De Brouwer 244/256

plot(arma_forecast, col="blue",lw = 4,

main = "Forecast of GDP per capita of Poland",

ylab = "income in current USD")

lines(year,GDP.per.capitia.in.current.USD, col = "red", type = 'b')

Forecast of GDP per capita of Poland

inc
om

e i
n c

urr
en

t U
SD

1990 1995 2000 2005 2010 2015

50
00

10
00

0
15

00
0

20
00

0

●

●
● ●

●

●
● ●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 32: Optimal moving average forecast.

© Dr. Philippe J.S. De Brouwer 245/256

Simple Exponential smoothing

Exponential smoothing assigns higher weights to the most recent observations (the weight will decrease
exponentially for older observations). The effect will be that a new dramatic event has a much faster impact, and
that the “memory of it” will decrease exponentially.
The package forecast provides the function ses to execute this as follows:

g.exp <- ses(g.data,5,initial="simple")

g.exp # simple exponential smoothing uses the last value as

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

2016 12558.87 11144.352 13973.39 10395.550 14722.19

2017 12558.87 10558.438 14559.30 9499.473 15618.27

2018 12558.87 10108.851 15008.89 8811.889 16305.85

2019 12558.87 9729.832 15387.91 8232.229 16885.51

2020 12558.87 9395.909 15721.83 7721.538 17396.20

the forecast and finds confidence intervals around it

© Dr. Philippe J.S. De Brouwer 246/256

plot(g.exp,col="blue",lw=4,

main="Forecast of GDP per capita of Poland",

ylab="income in current USD")

lines(year,GDP.per.capitia.in.current.USD,col="red",type='b')

Forecast of GDP per capita of Poland

inc
om

e i
n c

urr
en

t U
SD

1990 1995 2000 2005 2010 2015 2020

50
00

10
00

0
15

00
0

●

●
● ●

●

●

● ●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 33: Forecasting with an exponentially smoothed moving average.

© Dr. Philippe J.S. De Brouwer 247/256

Holt Exponential smoothing

g.exp <- holt(g.data,5,initial="simple")

g.exp # Holt exponential smoothing

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

2016 13445.71 12144.40 14747.02 11455.53 15435.89

2017 13950.04 12257.07 15643.01 11360.86 16539.22

2018 14454.37 12444.67 16464.07 11380.80 17527.94

2019 14958.70 12675.80 17241.60 11467.31 18450.10

2020 15463.04 12936.30 17989.77 11598.73 19327.34

© Dr. Philippe J.S. De Brouwer 248/256

plot(g.exp,col="blue",lw=4,

main="Forecast of GDP per capita of Poland",

ylab="income in current USD")

lines(year,GDP.per.capitia.in.current.USD,col="red",type='b')

Forecast of GDP per capita of Poland

inc
om

e i
n c

urr
en

t U
SD

1990 1995 2000 2005 2010 2015 2020

50
00

10
00

0
15

00
0

20
00

0

●

●
● ●

●

●
● ●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 34: Holt exponentially smoothed moving average.

© Dr. Philippe J.S. De Brouwer 249/256

Seasonal Decomposition

we use the data nottem

Average Monthly Temperatures at Nottingham, 1920-1939

nottem.stl = stl(nottem, s.window="periodic")

plot(nottem.stl)

30
40

50
60

da
ta

−1
0

−5
0

5
10

se
as

on
al

48
49

50
51

tre
nd

−6
−4

−2
0

2
4

1920 1925 1930 1935 1940

rem
ain

de
r

time

Figure 35: Using the stl-function to decompose data in a seasonal part and a trend.
© Dr. Philippe J.S. De Brouwer 250/256

Exponential Models

Simple exponential: models level

fit <- HoltWinters(g.data, beta=FALSE, gamma=FALSE)

Double exponential: models level and trend

fit <- HoltWinters(g.data, gamma=FALSE)

Triple exponential: models level, trend, and seasonal

components. This fails on the example, as there is no

seasonal trend:

#fit <- HoltWinters(g.data)

Predictive accuracy

library(forecast)

accuracy(forecast(fit,5))

ME RMSE MAE MPE MAPE MASE

Training set -69.84485 1051.488 711.7743 -2.775476 9.016881 0.8422587

ACF1

Training set 0.008888197

© Dr. Philippe J.S. De Brouwer 251/256

predict next 5 future values

forecast(fit, 5)

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

2016 13457.63 12084.15 14831.11 11357.07 15558.18

2017 13961.96 12179.69 15744.23 11236.21 16687.71

2018 14466.29 12352.87 16579.71 11234.10 17698.49

2019 14970.62 12571.33 17369.91 11301.23 18640.02

2020 15474.95 12820.41 18129.50 11415.17 19534.74

© Dr. Philippe J.S. De Brouwer 252/256

plot(forecast(fit, 5),col="blue",lw=4,

main="Forecast of GDP per capita of Poland",

ylab="income in current USD")

lines(year,GDP.per.capitia.in.current.USD,col="red",type='b')

Forecast of GDP per capita of Poland

inc
om

e i
n c

urr
en

t U
SD

1990 1995 2000 2005 2010 2015 2020

50
00

10
00

0
15

00
0

20
00

0

●

●
● ●

●

●
● ●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 36: The Holt-Winters model fits an exponential trend. Here we plot the double exponential model.

© Dr. Philippe J.S. De Brouwer 253/256

Exercise

Question #7

Use themoving averagemethod on the temperatures in Nottingham (nottam). Does it work? Whichmodel
would work better?

© Dr. Philippe J.S. De Brouwer 254/256

The Big R-Book by Philippe J.S. De Brouwer

part 02: Starting with R and Elements of Statistics
↓

chapter 11:

Further Reading

© Dr. Philippe J.S. De Brouwer 255/256

Further Reading about R

Further information – CRAN

The website of the R is https://cran.r-project.org and it carries also plenty of documentation. Here
is a selection:
• /doc/manuals/R-intro.html: another take on what we have covered in this part.
• /doc/manuals/R-FAQ.html A faq with very specific information that never will be included in a

book like these but that might be relevant if you have happen to have certain backgrounds (such as
S for example)

• /doc/manuals/R-lang.html describes in much more detail the internal workings of the language.
• /doc/manuals/R-data.html: covers the data-import and data-export functions in great detail.

Best to read after next part if you happen to be on the data-side of the development cycle.
• /doc/manuals/R-exts.html will help you to create your very own packages. This makes a lot of

sense, even if your company want to keep them propriety to the company. Capturing all the logic of
your specifics in a package will save enormous amounts of time and money. Just imagine that you
write once how to import data from your corporate mainframe or central data-warehouse.
Hundreds of programmers and thousands of modellers can use the same package. Model
validators only need to review this module once, etc.

© Dr. Philippe J.S. De Brouwer 256/256

https://cran.r-project.org
/doc/manuals/R-intro.html:
/doc/manuals/R-FAQ.html
/doc/manuals/R-lang.html
/doc/manuals/R-data.html:
/doc/manuals/R-exts.html

	Getting Started with R
	Variables
	Data Types
	The Elementary Types
	Vectors
	Accessing Data from a Vector
	Matrices
	Arrays
	Lists
	Factors
	Data Frames
	Strings or the Character-type

	Operators
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Assignment Operators
	Other Operators

	Flow Control Statements
	Choices
	Loops

	Functions
	Built-in Functions
	Help with Functions
	User-defined Functions
	Changing Functions
	Creating Function with Default Arguments

	Packages
	Discovering Packages in R
	Managing Packages in R

	Selected Data Interfaces
	CSV Files
	Excel Files
	Databases

	Environments in R
	Lexical Scoping in R
	Base Types
	S3 Objects
	Creating S3 Objects
	Creating Generic Methods
	Method Dispatch
	Group Generic Functions

	S4 Objects
	Creating S4 Objects
	Using S4 Objects
	Validation of Input
	Constructor functions
	The .Data slot
	Recognising Objects, Generic Functions, and Methods
	Creating S4 Generics
	Method Dispatch

	The Reference Class, refclass, RC or R5 Model
	Creating RC Objects
	Important Methods and Attributes

	Conclusions about the OO Implementation
	The Philosophy of the Tidyverse
	Packages in the Tidyverse
	The Core Tidyverse
	The Non-core Tidyverse

	Working with the Tidyverse
	Tibbles
	Piping with R
	Attention Points When Using the Pipe
	Advanced Piping
	Conclusion

	Measures of Central Tendency
	Mean
	The Median
	The Mode

	Measures of Variation or Spread
	Measures of Covariation
	The Pearson Correlation
	The Spearman Correlation
	Chi-square Tests

	Distributions
	Normal Distribution
	Binomial Distribution

	Creating an Overview of Data Characteristics
	Scatterplots
	Line Graphs
	Pie Charts
	Bar Charts
	Boxplots
	Violin Plots
	Histograms
	Plotting Functions
	Maps and Contour Plots
	Heat-maps
	Text Mining
	Word Clouds
	Word Associations

	Colours in R
	Time Series in R
	The Basics of Time Series in R

	Forecasting
	Moving Average
	Seasonal Decomposition

