
THE BIG-R BOOK
FROM DATA SCIENCE TO LEARNING MACHINES AND BIG DATA

— PART 03—

Dr. Philippe J.S. De Brouwer
last compiled: September 1, 2021
Version 0.1.1

(c) 2021 Philippe J.S. De Brouwer – distribution allowed by John Wiley & Sons, Inc.

THE BIG R-BOOK:
From Data Science to Big Data and Learning

Machines

�— PART 03: Data Import —�

(c) 2021 by Philippe J.S. De Brouwer – distribution allowed by John Wiley & Sons, Inc.

These slides are to be used in with the book – for best experience, teachers will read the book before using the slides and students have access to the
book and the code.

© Dr. Philippe J.S. De Brouwer 2/48

The Big R-Book by Philippe J.S. De Brouwer

part 03: Data Import
↓

chapter 12:

A Short History of Modern Database Systems

© Dr. Philippe J.S. De Brouwer 3/48

Short History of Databases

1 tally sticks (since the Upper Palaeolithic)

2 paper files

3 1950s: punch cards

4 1960s: tape storage and later disks with random access and the appearance of navigational database
systems

5 1970s: RDBMS (relational database systems)

6 1980s: the personal computers, object oriented programming

7 2000s: big data and revisiting the NoSQL databases from the 1950s, NewSQL, MapReduce, Hadoop, etc.

© Dr. Philippe J.S. De Brouwer 4/48

The Big R-Book by Philippe J.S. De Brouwer

part 03: Data Import
↓

chapter 13:

RDBMS

© Dr. Philippe J.S. De Brouwer 5/48

An example of a database: a library

Consider a simple example that will demonstrate the basics of a relational database system. Imagine that we
want to create a system that governs a library of books. There are multiple ways to do this, but the following
tables are a good choice to get started:

• Authors, with their name, first name, eventually year of birth and death (if applicable) – A table of authors:
Table 1 on slide 7;
• Books, with title, author, editor, ISIN, year, number of pages, subject code, etc. – A table of books: Table 2 on

slide 8;
• Subject codes, with a description – A table of genres: Table 3 on slide 9.

© Dr. Philippe J.S. De Brouwer 6/48

The table to store author names

tbl_authors
id pen_name full_name birth death
PK
1 Marcel Proust Valentin Louis G. E. Marcel Proust 1871-07-10 1922-11-18
2 Miguel de Cervantes Miguel de Cervantes Saavedra 1547-09-29 1616-04-22
3 James Joyce James Augustine Aloysius Joyce 1882-02-02 1941-01-13
4 E.L. James Erika Leonard 1963-03-07
5 Isaac Newton Isaac Newton 1642-12-25 1726-03-20
7 Euclid Euclid of Alexandria Mid-4th C BC Mid-3rd C BC
11 Bernard Marr Bernard Marr
13 Bart Baesens Bart Baesens 1975-02-27
17 Philippe De Brouwer Philippe J.S. De Brouwer 1969-02-21

Table 1: The table of authors for our simple database system.

© Dr. Philippe J.S. De Brouwer 7/48

The table with books

tbl_books
id author year title genre
PK FK FK
1 1 1896 Les plaisirs et les jour LITmod
2 1 1927 Albertine disparue LITmod
4 1 1954 Contre Sainte-Beuve LITmod
5 1 1871–1922 À la recherche du temps perdu LITmod
7 2 1605 and 1615 El Ingenioso Hidalgo Don Quijote de la Mancha LITmod
9 2 1613 Novelas ejemplares LITmod
10 4 2011 Fifty Shades of Grey LITero
15 5 1687 PhilosophiæNaturalis Principia Mathematica SCIphy
16 7 300 BCE Elements SCImat
18 13 2014 Big Data World SCIdat
19 11 2016 Key Business Analytics SCIdat
20 17 2011 Malowian Portfolio Theory SCIfin

Table 2: The table that contains information related to books.

© Dr. Philippe J.S. De Brouwer 8/48

The table with genres

tbl_genres
id (PK) type sub_type location
PK FK
LITmod literature modernism 001.45
LITero literature erotica 001.67
SCIphy science physics 200.43
SCImat science mathematics 100.53
SCIbio science biology 300.10
SCIdat science data science 205.13
FINinv financial investments 405.08

Table 3: A simple example of a relational database system or RDBMS for a simple system for a library. It shows that each piece of information is
only stored once and that tables are rectangular data.

© Dr. Philippe J.S. De Brouwer 9/48

The Big R-Book by Philippe J.S. De Brouwer

part 03: Data Import
↓

chapter 14:

SQL

© Dr. Philippe J.S. De Brouwer 10/48

The Big R-Book by Philippe J.S. De Brouwer

part 03: Data Import

↓

chapter 14: SQL

↓

section 1:

Designing the Database

© Dr. Philippe J.S. De Brouwer 11/48

The Entity Relationship (ER) diagram

AuthorID

Pen name Full Name Birth Date

Deceased Date

Wrote

BookID

Title

Year

belongs to

GenreLocation

ID Genre title

Sub type

Figure 1: The entity relationship (ER) diagram for our example, the library of books.
© Dr. Philippe J.S. De Brouwer 12/48

The tables and the relations

tbl_authors

author_id pen_name full_name

tbl_books

book_id author year title genre

tbl_genre

genre_id type sub_type location

Figure 2: The database scheme for the library.

© Dr. Philippe J.S. De Brouwer 13/48

The Big R-Book by Philippe J.S. De Brouwer

part 03: Data Import

↓

chapter 14: SQL

↓

section 2:

Building the Database Structure

© Dr. Philippe J.S. De Brouwer 14/48

SQL code to create the database

-- First create a database:

CREATE DATABASE library;

-- Create a superuser for that database:

GRANT ALL PRIVILEGES ON library.* To 'libroot'@'localhost' IDENTIFIED BY 'librootPWD';

-- Create also a user who can only update data:

CREATE USER librarian@localhost IDENTIFIED BY 'librarianPWD';

GRANT SELECT, INSERT, UPDATE, DELETE ON library.* TO librarian@localhost;

-- Display a list of tables:

show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| library |

| mysql |

| performance_schema |

| sys |

+--------------------+

-- Note that we did not create the other databases, they are used by MySQL

-- to manage everything.

-- Leave the MySQL terminal:

\q

Listing 1: Create the database in which all tables will be created, and grant rights to the user “libroot”. Replace of course the words
“librrootPWD” and “librarianPWD” with your password of choice.

© Dr. Philippe J.S. De Brouwer 15/48

Start MySQL with the newly created user

At this point, the database administrator for our library, “libroot,” exits. Using this user is safer, because you will
not be able to accidentally delete any other database, table or record in a table. We will now log in once more, but
with that user-id:

mysql -u libroot -p

Listing 2: Starting MySQL, as user “libroot.” Note that this is done from the Linux CLI.

© Dr. Philippe J.S. De Brouwer 16/48

Create the tables for the authors in SQL

Now, that we are logged in as libroot, we will start to create the tables in which later all data will reside:

-- First, we need to tell MySQL which database to use.

USE library;

-- Check if the table exists and if so delete it:

DROP TABLE IF EXISTS `tbl_authors`;

-- Then we can start to create tables

CREATE TABLE `tbl_authors`

(

author_id INT UNSIGNED auto_increment PRIMARY KEY not null,

pen_name VARCHAR(100) NOT NULL,

full_name VARCHAR(100),

birth_date DATE,

death_date DATE

)

ENGINE INNODB COLLATE 'utf8_unicode_ci';

Listing 3: Create the table tbl_authors.

© Dr. Philippe J.S. De Brouwer 17/48

Important aspects when creating a table i

• INT stands for integer and will hold integers. INT will be encoded in 4 bytes. Since each byte is 4 bits, this
will hold 32 bits. We need one bit for the sign, so the range is from−2(32−1) to +2(32−1). INT can be signed
or unsigned (ie. allowing negative numbers or not). The default is signed, so that does not have to be
mentioned. If you will only have positive numbers, one can choose for UNSIGNED. MysQL supports the
following:

1 TINYINT = 1 byte (8 bit): from −128 to 127 signed and from 0 to 255 unsigned
2 SMALLINT = 2 bytes (16 bit): from −32 768 to 32 767 signed and from 0 to 65 535 unsigned
3 MEDIUMINT = 3 bytes (24 bit): from −8 388 608 to 8 388 607 signed and from 0 to 16 777 215 unsigned
4 INT = 4 bytes (32 bit): from −2 147 483 648 to 2 147 483 647 signed and from 0 to 4 294 967 295 unsigned
5 BIGINT = 8 bytes (64 bit): from −263 to −263 − 1 signed and from 0 to −264 − 1 unsigned;

• PRIMARY KEY indicates – not surprisingly – that this field is the primary key (PK), hence, it will have to be
unique and that is the field that will uniquely define the author;
• auto_increment tells MySQL to manage the value of this field by itself: if the user does not provide a unique

number, then MySQL will automatically allocate a number that is free when a record is created;
• VARCHAR(100) will hold a string up to 100 characters;
• DATE will hold dates between 1000-01-01 and 9999-12-31;

© Dr. Philippe J.S. De Brouwer 18/48

Important aspects when creating a table ii

• We also provide a “collation.” A collation in MySQL is a set of rules that defines how to compare and sort
character strings, and is somehow comparable to the typical regional settings. For example, the
utf8_unicode_ci” implements the standard Unicode Collation Algorithm, it supports expansions and
ligatures, for example: German letter ß (U+00DF LETTER SHARP S) is sorted near “ss” Letter œ (U+0152
LATIN CAPITAL LIGATURE OE) is sorted near “OE,” etc. We opt for this collation, because we expect to see
many international names in this table.

© Dr. Philippe J.S. De Brouwer 19/48

Create the tables for the authors in SQL

-- If the table already exists, delete it first:

DROP TABLE IF EXISTS `tbl_books`;

-- Create the table tbl_books:

CREATE TABLE `tbl_books`

(

book_id INT unsigned auto_increment

PRIMARY KEY not null,

author INT unsigned NOT NULL REFERENCES

tbl_authors(author_id)

ON DELETE RESTRICT,

year SMALLINT, -- provides 30~000 years

title VARCHAR(50), -- maximum 50 characters

genre CHAR(6) NOT NULL REFERENCES -- always 6

tbl_genres(genre_id) ON DELETE RESTRICT

)

ENGINE INNODB COLLATE 'utf8_unicode_ci';

-- Create an index for speedy lookup on those fields:

CREATE INDEX idx_book_author ON tbl_books (author);

CREATE INDEX idx_book_genre ON tbl_books (genre);

Listing 4: This SQL code block creates the table tbl_books and then define an index on two of its fields.

© Dr. Philippe J.S. De Brouwer 20/48

Manage the indexes of the tables

-- Create an index where the values must be unique

-- (except for the NULL values, which may appear multiple times):

ALTER TABLE tbl_name ADD UNIQUE index_name (column_list);

-- Create an index in which any value may appear more than once:

ALTER TABLE tbl_name ADD INDEX index_name (column_list);

-- A special index that helps searching in full text:

ALTER TABLE tbl_name ADD FULLTEXT index_name (column_list);

-- We can also add a primary key:

ALTER TABLE tbl_name ADD PRIMARY KEY (column_list);

-- Drop an index:

ALTER TABLE table_name DROP INDEX index_name;

-- Drop a primary key:

ALTER TABLE tbl_name DROP PRIMARY KEY;

Listing 5: Manage indexes in MySQL

© Dr. Philippe J.S. De Brouwer 21/48

Create the tables for the genres in SQL

-- In case it would already exist, delete it first:

DROP TABLE IF EXISTS `tbl_genres`;

-- Create the table:

CREATE TABLE `tbl_genres`

(

genre_id CHAR(6) PRIMARY KEY not null,

type VARCHAR(20),

sub_type VARCHAR(20),

location CHAR(7)

)

ENGINE INNODB COLLATE 'utf8_unicode_ci';

-- Show the tables in our database:

show tables;

+-------------------+

| Tables_in_library |

+-------------------+

| tbl_authors |

| tbl_books |

| tbl_genres |

+-------------------+

3 rows in set (0,01 sec)

Listing 6: This SQL code creates the table tbl_genres and then checks if it is really there.
© Dr. Philippe J.S. De Brouwer 22/48

Inspect the results

It is possible to check our work with DESCRIBE TABLE. That command will show relevant details about the table
and its field:

mysql> DESCRIBE tbl_genres;

+----------+-------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+-------------+------+-----+---------+-------+

| genre_id | char(6) | NO | PRI | NULL | |

| type | varchar(20) | YES | | NULL | |

| sub_type | varchar(20) | YES | | NULL | |

| location | char(7) | YES | | NULL | |

+----------+-------------+------+-----+---------+-------+

4 rows in set (0,00 sec)

Listing 7: Checking the structure of the table tbl_books.

© Dr. Philippe J.S. De Brouwer 23/48

The Big R-Book by Philippe J.S. De Brouwer

part 03: Data Import

↓

chapter 14: SQL

↓

section 3:

Adding Data to the Database

© Dr. Philippe J.S. De Brouwer 24/48

Log into the database as librarian

Since we did the effort to create a username for updating the data, let us use it. In MySQL, type exit or \q

followed by enter and then login again from the command prompt.

mysql -u librarian -p

Listing 8: Logging in as user “librarian.”

© Dr. Philippe J.S. De Brouwer 25/48

Add one record

Let us start by adding one record:

INSERT INTO tbl_authors

VALUES (1, "Philppe J.S. De Brouwer", "Philppe J.S. De Brouwer", "1969-02-21", NULL);

Listing 9: Adding our first author to the database.

Note – Providing values for automatically incremented fields

WhileMySQLwas supposed tomanage the author_id, it did not complain when it was coerced in using a
certain value (given that the value is in range, of good type and of course still free). Without this lenience,
uploading data or restoring and SQL-dump would not always be possible.

© Dr. Philippe J.S. De Brouwer 26/48

Add multiple records i

Of course, it is also possible to add multiple records in one statement:

-- First, remove all our testing (1 is equivalent with TRUE):

DELETE FROM tbl_authors WHERE 1;

-- Since we provide a value for each row, we can omit the

-- fields, though it is better to make it explicit when

-- inserting the data:

INSERT INTO tbl_authors (author_id, pen_name, full_name, birth_date, death_date)

VALUES

(1 , "Marcel Proust",

"Valentin Louis G. E. Marcel Proust",

"1871-07-10", "1922-11-18"),

(2 , "Miguel de Cervantes",

"Miguel de Cervantes Saavedra",

"1547-09-29", "1616-04-22"),

(3 , "James Joyce",

"James Augustine Aloysius Joyce",

"1882-02-02", "1941-01-13"),

(4 , "E. L. James", "Erika Leonard",

"1963-03-07", NULL),

(5 , "Isaac Newton", "Isaac Newton",

"1642-12-25", "1726-03-20"),

© Dr. Philippe J.S. De Brouwer 27/48

Add multiple records ii

(7 , "Euclid", "Euclid of Alexandria",

NULL, NULL),

(11, "Bernard Marr", "Bernard Marr",

NULL, NULL),

(13, "Bart Baesens", "Bart Baesens",

"1975-02-27", NULL),

(14, "Philippe J.S. De Brouwer",

"Philippe J.S. De Brouwer",

"1969-02-21", NULL)

;

Listing 10: This SQL code adds all books in one statement.

© Dr. Philippe J.S. De Brouwer 28/48

Inserting data in the genres table

INSERT INTO tbl_genres (genre_id, type, sub_type, location)

VALUES

("LITmod", "literature", "modernism", "001.45"),

("LITero", "literature", "erotica", "001.67"),

("SCIphy", "science", "physics", "200.43"),

("SCImat", "science", "mathematics", "100.53"),

("SCIbio", "science", "biology", "300.10"),

("SCIdat", "science", "data science", "205.13"),

("FINinv", "financial", "investments", "405.08")

;

Listing 11: Add the data to the table tbl_genres.

© Dr. Philippe J.S. De Brouwer 29/48

Inserting data in the table for books

INSERT INTO tbl_books (author, year, title, genre)

VALUES

(1, 1896, "Les plaisirs et les jour", "LITmod"),

(1, 1927, "Albertine disparue", "LITmod"),

(1, 1954, "Contre Sainte-Beuve", "LITmod"),

(1, 1922, "AÌĂ la recherche du temps perdu", "LITmod"),

(2, 1615, "El Ingenioso Hidalgo Don Quijote de la Mancha", "LITmod"),

(2, 1613, "Novelas ejemplares", "LITmod"),

(4, 2011, "Fifty Shades of Grey", "LITero"),

(5, 1687, "PhilosophiÃę Naturalis Principia Mathematica", "SCIphy"),

(7, -300, "Elements (translated)", "SCImat"),

(13, 2014, "Big Data World", "SCIdat"),

(11, 2016, "Key Business Analytics", "SCIdat"),

(14, 2011, "Maslowian Portfolio Theory", "FINinv")

;

Listing 12: Add the data to the table tbl_books.

© Dr. Philippe J.S. De Brouwer 30/48

The Big R-Book by Philippe J.S. De Brouwer

part 03: Data Import

↓

chapter 14: SQL

↓

section 4:

Querying the Database

© Dr. Philippe J.S. De Brouwer 31/48

SELECT queries are intuitive

-- Show all info about all authors:

SELECT * from tbl_authors;

-- Show all pen_names and birth_dates from tbl_authors:

SELECT pen_name, birth_date FROM tbl_authors;

-- Show all authors from the last two centuries

SELECT pen_name FROM tbl_authors WHERE birth_date > DATE("1900-01-01");

-- Include also the ones that have no birth data in the system"

SELECT pen_name FROM tbl_authors

WHERE (

(birth_date > DATE("1900-01-01"))

OR

(ISNULL(birth_date))

) ;

Listing 13: Some example of SELECT-queries. Note that the output is not shown here, simply because it would be too long.

© Dr. Philippe J.S. De Brouwer 32/48

The Big R-Book by Philippe J.S. De Brouwer

part 03: Data Import

↓

chapter 14: SQL

↓

section 5:

Modifying the Database Structure

© Dr. Philippe J.S. De Brouwer 33/48

How to add a book with multiple authors

This is a great day today. We received finally our copy of Hadley Wickham and Garret Gerolemund’s book “R for
Data Science” and we want to add it to our library. However, we can enter only one reference to one author in our
library. After a brainstorm meeting, we come up with the following solutions:

1 Pretend that this book did not arrive, send it back or make it disappear: adapt reality to the limitations of our
computer system.

2 Put one of the two authors in the system and hope this specific issue does not occur to often.1

3 Add a second author-field to the table tbl_books. That would solve the case for two authors, but not for
three or more.

4 Add 10 additional fields as described above. This would indeed solve most cases, but we still would have to
re-write all queries in a non-obvious way. Worse, most queries will just run and we will only find out later that
something was not as expected. Also, we feel that this solution is not elegant at all.

5 Add a table that links the authors and the books. This will solution would allow us to record between zero
and a huge amount of authors. This would be a fundamentally different database design and if the library
software would already be written2 this solution might not pass the Pareto rule.

© Dr. Philippe J.S. De Brouwer 34/48

The updated database design

tbl_authors

author_id pen_name full_name

tbl_author_book

ab_id author book

tbl_books

book_id author year title genre

tbl_genre

genre_id type sub_type location

Figure 3: The improved database scheme that allows multiple authors to co-author one book by adding a table tbl_author_book
between the table with books and the table with authors. Now, only the pair author/book has to be unique.

© Dr. Philippe J.S. De Brouwer 35/48

Implementing this design

-- Note that this has to be done as libroot or root,

-- the user librarian cannot do this!

-- Note also the different cascading rules. Why did we do so?

DROP TABLE IF EXISTS `tbl_author_book`;

CREATE TABLE `tbl_author_book`

(

ab_id INT unsigned auto_increment PRIMARY KEY not null,

author INT unsigned NOT NULL

REFERENCES tbl_authors(author_id) ON DELETE RESTRICT,

book INT unsigned NOT NULL

REFERENCES tbl_books(book_id) ON DELETE CASCADE

);

-- Ensure the combination of author/book appears only once:

ALTER TABLE `tbl_author_book`

ADD UNIQUE `unique_index`(`author`, `book`);

-- Insert all pairs of authors and books that we already know:

INSERT INTO tbl_author_book (author, book)

(SELECT author_id, book_id FROM tbl_authors, tbl_books

WHERE tbl_books.author = author_id

);

-- We can just drop the field author from the table tbl_books

-- and the link automatically disappears.

ALTER TABLE tbl_books DROP author;

Listing 14: This code first creates the table tbl_author_books and then inserts the necessary information that was already into the
database also in that table. Finally, it discards the old information.

© Dr. Philippe J.S. De Brouwer 36/48

Using the new database

Also retrieving information will be different. For example, finding all the books of a given author can work as
follows:

SELECT pen_name, title FROM tbl_authors, tbl_author_book, tbl_books

WHERE

(author_id = tbl_author_book.author) AND

(book_id = tbl_author_book.book) AND

(pen_name LIKE '%oust%')

;

-- MySQL will then reply this:

+---------------+---------------------------------+

| pen_name | title |

+---------------+---------------------------------+

| Marcel Proust | Les plaisirs et les jour |

| Marcel Proust | Albertine disparue |

| Marcel Proust | Contre Sainte-Beuve |

| Marcel Proust | A la recherche du temps perdu |

+---------------+---------------------------------+

© Dr. Philippe J.S. De Brouwer 37/48

The Big R-Book by Philippe J.S. De Brouwer

part 03: Data Import

↓

chapter 14: SQL

↓

section 6:

Selected Features of SQL

© Dr. Philippe J.S. De Brouwer 38/48

The keyword SET

The command SET also allows to update all selected variables in a table. For example, we can capitalize all
author names as follows:

UPDATE tbl_authors

SET full_name = CONCAT(UPPER(SUBSTRING(full_name,1,1)),

SUBSTRING(full_name,2,LENGTH(full_name)))

WHERE 1;

Listing 15: Capitalize all first letter of all full names of authors.

© Dr. Philippe J.S. De Brouwer 39/48

A function in SQL to calculate the average

delimiter //

CREATE PROCEDURE CalcAvgBooks (OUT avgBooks INT)

BEGIN

SELECT AVG(nbrBooks) INTO avgBooks FROM (SELECT COUNT(*) AS nbrBooks FROM tbl_author_book GROUP BY

author);

END//

delimiter ;

-- Now use the function:

CALL CalcAvgBooks(@myAVG);

-- Use now the parameter myAVG

SELECT CONCAT('The average number of books per author in our libaray is: ',@myAvg);

Listing 16: Creating a function and using it in SQL.

© Dr. Philippe J.S. De Brouwer 40/48

The Big R-Book by Philippe J.S. De Brouwer

part 03: Data Import
↓

chapter 15:

Connecting R to an SQL Database

© Dr. Philippe J.S. De Brouwer 41/48

RMySQL: setting it up

With the package RMySQL, it is possible to both connect to MariaDB and MySQL in a convenient way and copy the
data to R for further analysis. The basics of the package are to create a connection variable first and then use
that connection to retrieve data.

install.packages('RMySQL')

library(RMySQL)

connect to the library

con <- dbConnect(MySQL(),

user = "librarian",

password = "librarianPWD",

dbname = "library",

host = "localhost"

)

in case we would forget to disconnect:

on.exit(dbDisconnect(con))

© Dr. Philippe J.S. De Brouwer 42/48

RMySQL: using the open connection

Now, we have the connection stored in the object con and can use this to display data about the connection, run
queries, and retrieve data.

Show some information:

show(con)

summary(con, verbose = TRUE)

dbGetInfo(con) # similar as above but in list format

dbListResults(con)

dbListTables(con) # check: this might generate too much output

Get data:

df_books <- dbGetQuery(con, "SELECT COUNT(*) AS nbrBooks

FROM tbl_author_book GROUP BY author;")

Now, df_books is a data frame that can be used as usual.

close the connection:

dbDisconnect(con)

© Dr. Philippe J.S. De Brouwer 43/48

Define functions to connect to the database i

The code below does the same as the aforementioned code, but with our own custom functions that are a
wrapper for opening the connection, running the query, returning the data and closing the connection. We
strongly recommend to use this version.

© Dr. Philippe J.S. De Brouwer 44/48

Define functions to connect to the database ii

Load the package:

library(RMySQL)

db_get_data

Get data from a MySQL database

Arguments:

con_info -- MySQLConnection object -- the connection info to

the MySQL database

sSQL -- character string -- the SQL statement that

selects the records

Returns

data.frame, containing the selected records

db_get_data <- function(con_info, sSQL){

con <- dbConnect(MySQL(),

user = con_info$user,

password = con_info$password,

dbname = con_info$dbname,

host = con_info$host

)

df <- dbGetQuery(con, sSQL)

dbDisconnect(con)

df

}

© Dr. Philippe J.S. De Brouwer 45/48

Define functions to connect to the database iii

db_run_sql

Run a query that returns no data in an MySQL database

Arguments:

con_info -- MySQLConnection object -- open connection

sSQL -- character string -- the SQL statement to run

db_run_sql <-function(con_info, sSQL)

{

con <- dbConnect(MySQL(),

user = con_info$user,

password = con_info$password,

dbname = con_info$dbname,

host = con_info$host

)

rs <- dbSendQuery(con,sSQL)

dbDisconnect(con)

}

© Dr. Philippe J.S. De Brouwer 46/48

Creating a historgram of books per author i

use the wrapper functions to get data.

step 1: define the connection info

my_con_info <- list()

my_con_info$user <- "librarian"

my_con_info$password <- "librarianPWD"

my_con_info$dbname <- "library"

my_con_info$host <- "localhost"

step 2: get the data

my_query <- "SELECT COUNT(*) AS nbrBooks

FROM tbl_author_book GROUP BY author;"

df <- db_get_data(my_con_info, my_query)

step 3: use this data to produce the histogram:

hist(df$nbrBooks, col='khaki3')

© Dr. Philippe J.S. De Brouwer 47/48

Creating a historgram of books per author ii

Histogram of df$nbrBooks

df$nbrBooks

Fr
eq

ue
nc

y

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
2

4
6

8

Figure 4: Histogram generated with data from the MySQL database.

© Dr. Philippe J.S. De Brouwer 48/48

	Designing the Database
	Building the Database Structure
	Installing a RDBMS
	Creating the Database
	Creating the Tables and Relations

	Adding Data to the Database
	Querying the Database
	The Basic Select Query
	More complex queries

	Modifying the Database Structure
	Selected Features of SQL
	Changing data
	Functions in SQL

