
THE BIG-R BOOK
FROM DATA SCIENCE TO LEARNING MACHINES AND BIG DATA

— PART 04—

Dr. Philippe J.S. De Brouwer
last compiled: September 1, 2021
Version 0.1.1

(c) 2021 Philippe J.S. De Brouwer – distribution allowed by John Wiley & Sons, Inc.

THE BIG R-BOOK:
From Data Science to Big Data and Learning

Machines

�— PART 04: Data Wrangling —�

(c) 2021 by Philippe J.S. De Brouwer – distribution allowed by John Wiley & Sons, Inc.

These slides are to be used in with the book – for best experience, teachers will read the book before using the slides and students have access to the
book and the code.

© Dr. Philippe J.S. De Brouwer 2/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling
↓

chapter 16:

Anonymous Data

© Dr. Philippe J.S. De Brouwer 3/156

Encryption in SQL

-- Using AES 256 for example:

MariaDB [(none)]> SELECT AES_ENCRYPT("Hello World", "secret_key_string");

+---+

| AES_ENCRYPT("Hello World", "secret_key_string") |

+---+

| ï£¡Ewï£¡*0ï£¡ï£¡Wï£¡ï£¡ï£¡5%ï£¡ |

+---+

1 row in set (0.00 sec)

-- Example:

SELECT AES_ENCRYPT(name, "secret_key_string"), AES_ENCRYPT(phone number, "secret_key_string"),

number_purchases, satifaction_rating, sustomer_since, etc.

FROM tbl_customers;

-- To decrypt, use AES_DECRYPT(crypt_str, key_string)

Listing 1: SQL code for MySQL (or MariaDB) to encrypt using AES256. Note that those relational database systems (RDBMSs) provide
much more methods for encryption. It is worth to go through the documentation of your particular system for more support.

© Dr. Philippe J.S. De Brouwer 4/156

Anonymising data in R i

There is also the package sodium, created by Jeroen Ooms. It is a wrapper around libsodium, which is a
standard library. So you will need to install this first on your operating system (OS).

• deb: libsodium-dev (Debian, Ubuntu, etc.)
• rpm: libsodium-devel (Fedora, EPEL)
• csw: libsodium_dev (Solaris)
• brew: libsodium (OSX)

This means – most probably – your will first need to open a terminal and run the following commands in the CLI
(command line interface of your OS):

sudo apt-get install libsodium-dev

Then we can open R and install the sodium library for R.

© Dr. Philippe J.S. De Brouwer 5/156

Anonymising data in R ii

install.packages('sodium') # do only once

fails if you do not have libsodium-dev

library(sodium)

Create the SHA256 key based on a secret password:

key <- sha256(charToRaw("My sweet secret"))

Serialize the data to be encrypted:

msg <- serialize("Philippe J.S. De Brouwer", NULL)

Encrypt:

msg_encr <- data_encrypt(msg, key)

orig <- data_decrypt(msg_encr, key)

stopifnot(identical(msg, orig))

Tag the message with your key (HMAC):

tag <- data_tag(msg, key)

© Dr. Philippe J.S. De Brouwer 6/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling
↓

chapter 17:

Data Wrangling in the tidyverse

© Dr. Philippe J.S. De Brouwer 7/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 17: Data Wrangling in the tidyverse

↓

section 1:

Importing the Data

© Dr. Philippe J.S. De Brouwer 8/156

Reminder of the functions to connect to the database i

--

library(RMySQL)

-- The functions as mentioned earlier:

db_get_data

Get data from a MySQL database

Arguments:

con_info -- MySQLConnection object -- containing the connection

info to the MySQL database

sSQL -- character string -- the SQL statement that selects

the records

Returns

data.frame, containing the selected records

db_get_data <- function(con_info, sSQL){

con <- dbConnect(MySQL(),

user = con_info$user,

password = con_info$password,

dbname = con_info$dbname,

host = con_info$host

)

df <- dbGetQuery(con, sSQL)

dbDisconnect(con)

df

}

© Dr. Philippe J.S. De Brouwer 9/156

Reminder of the functions to connect to the database ii

db_run_sql

Run a query that returns no data in an MySQL database

Arguments:

con_info -- MySQLConnection object -- containing the connection

info to the MySQL database

sSQL -- character string -- the SQL statement to be run

db_run_sql <-function(con_info, sSQL)

{

con <- dbConnect(MySQL(),

user = con_info$user,

password = con_info$password,

dbname = con_info$dbname,

host = con_info$host

)

rs <- dbSendQuery(con,sSQL)

dbDisconnect(con)

}

© Dr. Philippe J.S. De Brouwer 10/156

Connecting to the library database

Load dplyr via tidyverse:

library(tidyverse)

Define the wrapper functions:

Step 1: define the connection info.

my_con_info <- list()

my_con_info$user <- "librarian"

my_con_info$password <- "librarianPWD"

my_con_info$dbname <- "library"

my_con_info$host <- "localhost"

-- The data import was similar to what we had done previously.

-- However, now we import all tables separately

Step 2: get the data

my_tables <- c("tbl_authors", "tbl_author_book",

"tbl_books", "tbl_genres")

my_db_names <- c("authors", "author_book",

"books", "genres")

Loop over the four tables and download their data:

for (n in 1:length(my_tables)) {

my_sql <- paste("SELECT * FROM `",my_tables[n],"`;", sep="")

df <- db_get_data(my_con_info, my_sql)

the next line uses tibbles are from the tidyverse

as_tibble(assign(my_db_names[n],df))

}

Step 3: do something with the data

-- This will follow in the remainder of the section

© Dr. Philippe J.S. De Brouwer 11/156

Importing CSV files via the tidyverse

library(tidyverse)

s_csv = "'a','b','c'\n001,2.34,.\n2,3.14,55\n3,.,43"

read_csv(s_csv)

A tibble: 3 x 3

`'a'` `'b'` `'c'`

<chr> <chr> <chr>

1 001 2.34 .

2 2 3.14 55

3 3 . 43

read_csv(s_csv, na = '.') # Tell R how to understand the '.'

A tibble: 3 x 3

`'a'` `'b'` `'c'`

<chr> <dbl> <dbl>

1 001 2.34 NA

2 2 3.14 55

3 3 NA 43

read_csv(s_csv, na = '.', quote = "'") # Tell how a string is quoted

A tibble: 3 x 3

a b c

<chr> <dbl> <dbl>

1 001 2.34 NA

2 2 3.14 55

3 3 NA 43

© Dr. Philippe J.S. De Brouwer 12/156

Importing fixed width files i

Make a string that looks like a fixed-width table (shortened):

txt <- "book_id year title genre

1 1896 Les plaisirs et les jour LITmod

2 1927 Albertine disparue LITmod

3 1954 Contre Sainte-Beuve LITmod

8 1687 PhilosophiÃę Naturalis Principia Mathematica SCIphy

9 -300 Elements (translated) SCImat

10 2014 Big Data World SCIdat

11 2016 Key Business Analytics SCIdat

12 2011 Maslowian Portfolio Theory FINinv

13 2016 R for Data Science SCIdat"

Starting from this string variable, we will create a text file that has data in the fixed-width format.

fileConn <- file("books.txt")

writeLines(txt, fileConn)

close(fileConn)

my_headers <- c("book_id","year","title","genre")

The previous code chunk has created the text file book.txt in the working path of R. Now, we can read it back in
to illustrate how the read_fwf() function works.

© Dr. Philippe J.S. De Brouwer 13/156

Importing fixed width files ii

Reading the fixed-width file

-- > by indicating the widths of the columns

t <- read_fwf(

file = "./books.txt",

skip = 1, # skip one line with headers

fwf_widths(c(8, 6, 48, 8), my_headers)

)

Inspect the input:

print(t)

A tibble: 9 x 4

book_id year title genre

<dbl> <dbl> <chr> <chr>

1 1 1896 Les plaisirs et les jour LITmod

2 2 1927 Albertine disparue LITmod

3 3 1954 Contre Sainte-Beuve LITmod

4 8 1687 PhilosophiÃę Naturalis Principia Mathematica SCIp

5 9 -300 Elements (translated) SCImat

6 10 2014 Big Data World SCIdat

7 11 2016 Key Business Analytics SCIdat

8 12 2011 Maslowian Portfolio Theory FINinv

9 13 2016 R for Data Science SCIdat

© Dr. Philippe J.S. De Brouwer 14/156

Importing fixed width files iii

-- > same but naming directly

t <- read_fwf(

file="./books.txt",

skip=1, # skip one line with headers

fwf_cols(book_id = 8, year = 6,

title = 48, genre = 8)

)

-- > by selecting columns (by indicating begin and end):

t2 <- read_fwf(

file = "books.txt",

skip = 1,

fwf_cols(year = c(11, 15),

title = c(17, 63))

)

-- > by guessing the columns

The function fwf_empty can help to guess where the columns start

based on white space

t3 <- read_fwf(

file = "books.txt",

skip = 1,

fwf_empty("books.txt")

)

© Dr. Philippe J.S. De Brouwer 15/156

Importing fixed width files iv

Note that this last method fails: it identifies a separate column for the word “Mathematica”, while this is actually
part of the column “title”:

print(t3)

A tibble: 9 x 5

X1 X2 X3 X4 X5

<dbl> <dbl> <chr> <chr> <chr>

1 1 1896 Les plaisirs et les jour <NA> LITmod

2 2 1927 Albertine disparue <NA> LITmod

3 3 1954 Contre Sainte-Beuve <NA> LITmod

4 8 1687 PhilosophiÃę Naturalis Principia Mathematica SCIphy

5 9 -300 Elements (translated) <NA> SCImat

6 10 2014 Big Data World <NA> SCIdat

7 11 2016 Key Business Analytics <NA> SCIdat

8 12 2011 Maslowian Portfolio Theory <NA> FINinv

9 13 2016 R for Data Science <NA> SCIdat

© Dr. Philippe J.S. De Brouwer 16/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 17: Data Wrangling in the tidyverse

↓

section 2:

Tidy Data

© Dr. Philippe J.S. De Brouwer 17/156

Tidy Data has

1 a tibble/data-frame for each dataset,

2 a column for each variable,

3 a row for each observation,

4 a value (or NA) in each cell – the intersection between row and column.

© Dr. Philippe J.S. De Brouwer 18/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 17: Data Wrangling in the tidyverse

↓

section 3:

Tidying Up Data with tidyr

© Dr. Philippe J.S. De Brouwer 19/156

Importing one table that contains the whole database

use the wrapper functions to get data.

step 1: define the connection info

my_con_info <- list()

my_con_info$user <- "librarian"

my_con_info$password <- "librarianPWD"

my_con_info$dbname <- "library"

my_con_info$host <- "localhost"

-- Import 2 tables combined

step 2: get the data

my_sql <- "SELECT * FROM tbl_authors

JOIN tbl_author_book ON author_id = author

JOIN tbl_books ON book = book_id

JOIN tbl_genres ON genre = genre_id;"

t_mix <- db_get_data(my_con_info, my_sql)

t_mix <- as.tibble(t_mix)

Show the result:

head(t_mix)

A tibble: 6 x 16

author_id pen_name full_name birth_date death_date ab_id author

<dbl> <chr> <chr> <chr> <chr> <dbl> <dbl>

1 1 Marcel Pr~ Valentin Lo~ 1871-07-10 1922-11-18 1 1

2 1 Marcel Pr~ Valentin Lo~ 1871-07-10 1922-11-18 2 1

3 1 Marcel Pr~ Valentin Lo~ 1871-07-10 1922-11-18 3 1

4 1 Marcel Pr~ Valentin Lo~ 1871-07-10 1922-11-18 4 1

5 2 Miguel de~ Miguel de C~ 1547-09-29 1616-04-22 5 2

6 2 Miguel de~ Miguel de C~ 1547-09-29 1616-04-22 6 2

... with 9 more variables: book <dbl>, book_id <dbl>, year <int>,

title <chr>, genre <chr>, genre_id <chr>, type <chr>,

sub_type <chr>, location <chr>

© Dr. Philippe J.S. De Brouwer 20/156

Workflow to split tables in R i

1 Understand the data structure, eventually talk to the data owners and understand what is the job at hand. In
this case, it is a mix of four tables: authors, a link-table to books, books, and genres.
Make a table of how much each author_id occurs:

nbr_auth <- t_mix %>% count(author_id)

Do the same and include all fields that are assumed to

be part of the table authors.

nbr_auth2 <- t_mix %>%

count(author_id, pen_name, full_name, birth_date, death_date, book)

nbr_auth$n - nbr_auth2$n

[1] 3 1 0 0 0 0 0 0 0 0 3 1 0 0

2 Learn from experiments till we find the right structure. In our case “book” is not unique for an “author,” so we
try again.
Try without book:

nbr_auth2 <- t_mix %>%

count(author_id, pen_name, full_name, birth_date, death_date)

Now these occurrences are the same:

nbr_auth$n - nbr_auth2$n

[1] 0 0 0 0 0 0 0 0 0 0

© Dr. Philippe J.S. De Brouwer 21/156

Workflow to split tables in R ii

3 This looks better. But note that this exact match is only possible because our data is clean (because we
took care and/or because we asked MySQL to help us to guard referential integrity). We still have to
determine now which table takes which fields.

4 Now, the heavy lifting is done and we can simply extract all data.

© Dr. Philippe J.S. De Brouwer 22/156

Workflow to split tables in R iii

my_authors <- tibble(author_id = t_mix$author_id,

pen_name = t_mix$pen_name,

full_name = t_mix$full_name,

birth_date = t_mix$birth_date,

death_date = t_mix$death_date

) %>%

unique %>%

print

A tibble: 10 x 5

author_id pen_name full_name birth_date death_date

<dbl> <chr> <chr> <chr> <chr>

1 1 Marcel Proust Valentin Louis G. ~ 1871-07-10 1922-11-18

2 2 Miguel de Cerv~ Miguel de Cervante~ 1547-09-29 1616-04-22

3 4 E. L. James Erika Leonard 1963-03-07 <NA>

4 5 Isaac Newton Isaac Newton 1642-12-25 1726-03-20

5 7 Euclid Euclid of Alexandr~ <NA> <NA>

6 11 Bernard Marr Bernard Marr <NA> <NA>

7 13 Bart Baesens Bart Baesens 1975-02-27 <NA>

8 14 Philippe J.S. ~ Philippe J.S. De B~ 1969-02-21 <NA>

9 15 Hadley Wickham Hadley Wickham <NA> <NA>

10 16 Garrett Grolem~ Garrett Grolemund <NA> <NA>

5 Repeat this process for all other tables.

© Dr. Philippe J.S. De Brouwer 23/156

Workflow to split tables in R iv

6 Check the data and see once more if it all makes sense. In our case we will want to correct some of the data
that has been imported and coerce them to the right type.
auth <- tibble(

author_id = as.integer(my_authors$author_id),

pen_name = my_authors$pen_name,

full_name = my_authors$full_name,

birth_date = as.Date(my_authors$birth_date),

death_date = as.Date(my_authors$death_date)

) %>%

unique %>%

print

A tibble: 10 x 5

author_id pen_name full_name birth_date death_date

<int> <chr> <chr> <date> <date>

1 1 Marcel Proust Valentin Louis G. ~ 1871-07-10 1922-11-18

2 2 Miguel de Cerv~ Miguel de Cervante~ 1547-09-29 1616-04-22

3 4 E. L. James Erika Leonard 1963-03-07 NA

4 5 Isaac Newton Isaac Newton 1642-12-25 1726-03-20

5 7 Euclid Euclid of Alexandr~ NA NA

6 11 Bernard Marr Bernard Marr NA NA

7 13 Bart Baesens Bart Baesens 1975-02-27 NA

8 14 Philippe J.S. ~ Philippe J.S. De B~ 1969-02-21 NA

9 15 Hadley Wickham Hadley Wickham NA NA

10 16 Garrett Grolem~ Garrett Grolemund NA NA

© Dr. Philippe J.S. De Brouwer 24/156

Convert headers to data: the example

First read in some data (using a flat file to remind

how this works):

x <- " January 100 102 108

February 106 105 105

March 104 104 106

April 120 122 118

May 130 100 133

June 141 139 135

July 175 176 180

August 170 188 187

September 142 148 155

October 133 137 145

November 122 128 131

December 102 108 110"

Read in the flat file via read_fwf from readr:

t <- read_fwf(x, fwf_empty(x, col_names = my_headers))

Set the column names:

colnames(t) <- c("month", "Sales2017", "Sales2018", "Sales2019")

Finally, we can show the data as it appeared in the spreadsheet

from the sales department:

print(t)

A tibble: 12 x 4

month Sales2017 Sales2018 Sales2019

<chr> <dbl> <dbl> <dbl>

1 January 100 102 108

2 February 106 105 105

3 March 104 104 106

4 April 120 122 118

5 May 130 100 133

6 June 141 139 135

7 July 175 176 180

8 August 170 188 187

9 September 142 148 155

10 October 133 137 145

11 November 122 128 131

12 December 102 108 110

© Dr. Philippe J.S. De Brouwer 25/156

Converting headers to data: the workflow

t2 <- gather(t, "year", "sales", 2:4)

t2$year <- str_sub(t2$year,6,9) # delete the sales word

t2$year <- as.integer(t2$year) # convert to integer

Show the result:

t2

A tibble: 36 x 3

month year sales

<chr> <int> <dbl>

1 January 2017 100

2 February 2017 106

3 March 2017 104

4 April 2017 120

5 May 2017 130

6 June 2017 141

7 July 2017 175

8 August 2017 170

9 September 2017 142

10 October 2017 133

... with 26 more rows

© Dr. Philippe J.S. De Brouwer 26/156

Spreading one column over many

library(dplyr)

sales_info <- data.frame(

time = as.Date('2016-01-01') + 0:9 + rep(c(0,-1), times=5),

type = rep(c("bought","sold"),5),

value = round(runif(10, min = 0, max = 10001))

)

Show the data frame:

sales_info

time type value

1 2016-01-01 bought 9949

2 2016-01-01 sold 3717

3 2016-01-03 bought 1936

4 2016-01-03 sold 1319

5 2016-01-05 bought 2131

6 2016-01-05 sold 9032

7 2016-01-07 bought 5954

8 2016-01-07 sold 9344

9 2016-01-09 bought 3999

10 2016-01-09 sold 6871

Use the function spread():

spread(sales_info, type, value)

time bought sold

1 2016-01-01 9949 3717

2 2016-01-03 1936 1319

3 2016-01-05 2131 9032

4 2016-01-07 5954 9344

5 2016-01-09 3999 6871
© Dr. Philippe J.S. De Brouwer 27/156

Split one column into many

library(tidyr)

The original data frame:

turnover <- data.frame(

what = paste(as.Date('2016-01-01') + 0:9 + rep(c(0,-1), times=5),

rep(c("HSBC","JPM"),5), sep="/"),

value = round(runif(10, min = 0, max = 50))

)

turnover

what value

1 2016-01-01/HSBC 29

2 2016-01-01/JPM 5

3 2016-01-03/HSBC 32

4 2016-01-03/JPM 13

5 2016-01-05/HSBC 26

6 2016-01-05/JPM 5

7 2016-01-07/HSBC 11

8 2016-01-07/JPM 36

9 2016-01-09/HSBC 41

10 2016-01-09/JPM 14

Use the function separate():

separate(turnover, what, into=c("date","counterpart"), sep="/")

date counterpart value

1 2016-01-01 HSBC 29

2 2016-01-01 JPM 5

3 2016-01-03 HSBC 32

4 2016-01-03 JPM 13

5 2016-01-05 HSBC 26

6 2016-01-05 JPM 5

7 2016-01-07 HSBC 11

8 2016-01-07 JPM 36

9 2016-01-09 HSBC 41

10 2016-01-09 JPM 14

© Dr. Philippe J.S. De Brouwer 28/156

Merging multiple columns into one

library(tidyr)

Define a data frame:

df <- data.frame(year = 2018, month = 0 + 1:12, day = 5)

print(df)

year month day

1 2018 1 5

2 2018 2 5

3 2018 3 5

4 2018 4 5

5 2018 5 5

6 2018 6 5

7 2018 7 5

8 2018 8 5

9 2018 9 5

10 2018 10 5

11 2018 11 5

12 2018 12 5

Merge the columns to one variable:

unite(df, 'date', 'year', 'month', 'day', sep = '-')

date

1 2018-1-5

2 2018-2-5

3 2018-3-5

4 2018-4-5

5 2018-5-5

6 2018-6-5

7 2018-7-5

8 2018-8-5

9 2018-9-5

10 2018-10-5

11 2018-11-5

12 2018-12-5

© Dr. Philippe J.S. De Brouwer 29/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 17: Data Wrangling in the tidyverse

↓

section 4:

SQL-like Functionality via dplyr

© Dr. Philippe J.S. De Brouwer 30/156

Loading dplyr

This functionality is provided by the library dplyr of the tidyverse. So, we will load it here and not repeat this in
every sub-section.

library(dplyr)

© Dr. Philippe J.S. De Brouwer 31/156

Selecting columns

Using the example of the library:

dplyr::select(genres, # the first argument is the tibble

genre_id, location) # then a list of column names

genre_id location

1 FINinv 405.08

2 LITero 001.67

3 LITmod 001.45

4 SCIbio 300.10

5 SCIdat 205.13

6 SCImat 100.53

7 SCIphy 200.43

© Dr. Philippe J.S. De Brouwer 32/156

Selecting certain rows only (filtering)

a1 <- filter(authors, birth_date > as.Date("1900-01-01"))

paste(a1$pen_name,"--",a1$birth_date)

[1] "E. L. James -- 1963-03-07"

[2] "Bart Baesens -- 1975-02-27"

[3] "Philippe J.S. De Brouwer -- 1969-02-21"

© Dr. Philippe J.S. De Brouwer 33/156

dplyr and SQL

Hint – Equivalence between dplyr and SQL

Note that

filter(count(author_book, author), n > 1}

is equivalent with the following in SQL

SELECT COUNT(author) FROM tbl_author_book

HAVING COUNT(author) > 1;

© Dr. Philippe J.S. De Brouwer 34/156

Joining tables i

In the tidyverse , dplyr provides a series of join-functions, that all share a similar synthax:

*_join(x, y, by = NULL, copy = FALSE, ...)

We distinguish the following join functions.

1 mutating joins: Contrary to what the name suggests, they do not mutate the tibbles on which they opearate.
These joins output fields of both data frames. dplyr provides the following “mutating joins”.

• inner_join() returns all the columns for x and y, but only those rows that have matching values in their respective
field/columns mentioned in the by-clause, and all columns from “x” and “y.” Note that it is possible that some of the
join-fields are not unique and hence there can be multiple matches for the same record, then all combinations are all
returned.

• left_join() returns all the columns for x and y, so that all rows of x will be returned at least once (with a match of y if it
exists, otherwise with a match to NA (or NULL in SQL vocabulary) (matches are defined by the by-clause). Note that it is
possible that some of the join-fields are not unique and hence there can be multiple matches for the same record or x,
then all combinations are all returned.

• right_join() is similar to the previous but roles of x and y are inverted. Hence, it returns all rows from y, and all columns
from x and y. Rows in y with no match in x will still be returned but have NA values in those rows of the y data frame.

• full_join() returns all rows and all columns from both data frames x and y. Where there are not matching values,
returns “NA” for the one missing.

2 filtering joins that only output the fields (columns) of the left data frame.

© Dr. Philippe J.S. De Brouwer 35/156

Joining tables ii

• semi_join() returns all rows from x but only if there is a matching values in the field of y, while only keeping the
columns of x. Note that unlike an inner join, the semi join will never duplicate rows of x

• anti_join() returns all rows from x that do not have a matching value in y, while keeping only the columns of x.

© Dr. Philippe J.S. De Brouwer 36/156

sqldf: leverage you SQL knowledge

library(sqldf)

Because we have RMySQL loaded (and we don't want to unload it) sqldf will

default to using that engine to run the queries. If we want it to use the

R environment and data frames, then use the following line:

options(sqldf.driver = "SQLite")

Now you can use SQL syntax on R-data-frames. Imagine that we need to find the

titles of books of the authors with name ending in 'Brouwer':

sqldf("SELECT B.title FROM authors AS A, author_book as AB, books AS B

WHERE A.author_id = AB.author AND AB.book = B.book_id

AND full_name LIKE '%Brouwer';")

title

1 Maslowian Portfolio Theory

© Dr. Philippe J.S. De Brouwer 37/156

Mutating data

ab <- authors %>%

inner_join(author_book, by = c("author_id" = "author")) %>%

inner_join(books, by = c("book" = "book_id")) %>%

add_count(author_id)

ab$n

[1] 4 4 4 4 2 2 1 1 1 1 1 1 1 1

© Dr. Philippe J.S. De Brouwer 38/156

Mutating data

t <- authors %>%

mutate(short_name = str_sub(pen_name,1,7)) %>%

mutate(x_name = if_else(str_length(pen_name) > 15,

paste(str_sub(pen_name,1,8),

"...",

str_sub(pen_name,

start = -3),

sep=''),

pen_name,

"pen_name is NA"

)

) %>%

mutate(is_alive =

if_else(!is.na(birth_date) & is.na(death_date),

"YES",

if_else(death_date < Sys.Date(),

"no",

"maybe"),

"NA")

) %>%

dplyr::select(c(x_name, birth_date, death_date, is_alive)) %>%

print()

x_name birth_date death_date is_alive

1 Marcel Proust 1871-07-10 1922-11-18 no

2 Miguel d...tes 1547-09-29 1616-04-22 no

3 James Joyce 1882-02-02 1941-01-13 no

4 E. L. James 1963-03-07 <NA> YES

5 Isaac Newton 1642-12-25 1726-03-20 no

6 Euclid <NA> <NA> <NA>

7 Bernard Marr <NA> <NA> <NA>

8 Bart Baesens 1975-02-27 <NA> YES

9 Philippe...wer 1969-02-21 <NA> YES

10 Hadley Wickham <NA> <NA> <NA>

11 Garrett ...und <NA> <NA> <NA>

© Dr. Philippe J.S. De Brouwer 39/156

Set operations

These functions are:

• intersect(x, y): A ∩ B but with duplicates removed,
• union(x, y): A ∪ B but with duplicates removed,
• union_all(x, y): A ∪ B,
• setdiff(x, y): A− B but with duplicates removed,
• setequal(x, y): A ∩ B.

© Dr. Philippe J.S. De Brouwer 40/156

Examples for set operators

Define two sets (with one column):

A <- tibble(col1 = c(1L:4L))

B <- tibble(col1 = c(4L,4L,5L))

Study some of the set-operations:

dplyr::intersect(A,B)

A tibble: 1 x 1

col1

<int>

1 4

union(A,B)

A tibble: 5 x 1

col1

<int>

1 1

2 2

3 3

4 4

5 5

union_all(A,B)

A tibble: 7 x 1

col1

<int>

1 1

2 2

3 3

4 4

5 4

6 4

7 5

setdiff(A,B)

A tibble: 3 x 1

col1

<int>

1 1

2 2

3 3

setequal(A,B)

[1] FALSE

The next example uses a data-frame with two columns:

A <- tibble(col1 = c(1L:4L),

col2 = c('a', 'a', 'b', 'b'))

B <- tibble(col1 = c(4L,4L,5L),

col2 = c('b', 'b', 'c'))

Study the same set-operations:

dplyr::intersect(A,B)

A tibble: 1 x 2

col1 col2

<int> <chr>

1 4 b

union(A,B)

A tibble: 5 x 2

col1 col2

<int> <chr>

1 1 a

2 2 a

3 3 b

4 4 b

5 5 c

union_all(A,B)

A tibble: 7 x 2

col1 col2

<int> <chr>

1 1 a

2 2 a

3 3 b

4 4 b

5 4 b

6 4 b

7 5 c

setdiff(A,B)

A tibble: 3 x 2

col1 col2

<int> <chr>

1 1 a

2 2 a

3 3 b

setequal(A,B)

[1] FALSE

© Dr. Philippe J.S. De Brouwer 41/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 17: Data Wrangling in the tidyverse

↓

section 5:

String Manipulation in the tidyverse

© Dr. Philippe J.S. De Brouwer 42/156

Strings in the tidyverse

library(tidyverse)

library(stringr)

define strings

s1 <- "Hello" # double quotes are fine

s2 <- 'world.' # single quotes are also fine

Return the length of a string:

str_length(s1)

[1] 5

Concatenate strings:

str_c(s1, ", ", s2) # str_c accepts many strings

[1] "Hello, world."

str_c(s1, s2, sep = ", ") # str_c also has a

[1] "Hello, world."

© Dr. Philippe J.S. De Brouwer 43/156

The str_* family of functions of stringr i

library(stringr) # or library(tidyverse)

sVector <- c("Hello", ", ", "world", "Philippe")

str_sub (sVector,1,3) # the first 3 characters

[1] "Hel" ", " "wor" "Phi"

str_sub (sVector,-3,-1) # the last 3 characters

[1] "llo" ", " "rld" "ppe"

str_to_lower(sVector[4]) # convert to lowercase

[1] "philippe"

str_to_upper(sVector[4]) # convert to uppercase

[1] "PHILIPPE"

str_c(sVector, collapse=" ") # collapse into one string

[1] "Hello , world Philippe"

str_flatten(sVector, collapse=" ") # flatten string

[1] "Hello , world Philippe"

str_length(sVector) # length of a string

[1] 5 2 5 8

© Dr. Philippe J.S. De Brouwer 44/156

The str_* family of functions of stringr ii

Nest the functions:

str_c(str_to_upper(str_sub(sVector[4],1,4)),

str_to_lower(str_sub(sVector[4],5,-1))

)

[1] "PHILippe"

Use pipes:

sVector[4] %>%

str_sub(1,4) %>%

str_to_upper()

[1] "PHIL"

© Dr. Philippe J.S. De Brouwer 45/156

Duplicating strings with stringr

One of the most simple string manipulations is duplicating them to form a longer string. Here we ask stringr to
produce a dark shade of grey.

str <- "F0"

str_dup(str, c(2,3)) # duplicate a string

[1] "F0F0" "F0F0F0"

© Dr. Philippe J.S. De Brouwer 46/156

Manage White Space

str <- c(" 1 ", " abc", "Philippe De Brouwer ")

str_pad(str, 5) # fills with white-space to x characters

[1] " 1 " " abc"

[3] "Philippe De Brouwer "

str_pad never makes a string shorter!

So to make all strings the same length we first truncate:

str %>%

str_trunc(10) %>%

str_pad(10,"right") %>%

print

[1] " 1 " " abc " "Philipp..."

Remove trailing and leading white space:

str_trim(str)

[1] "1" "abc" "Philippe De Brouwer"

str_trim(str,"left")

[1] "1 " "abc"

[3] "Philippe De Brouwer "

Modify an existing string to fit a line length:

"The quick brown fox jumps over the lazy dog. " %>%

str_dup(5) %>%

str_c %>% # str_flatten also removes existing \n

str_wrap(50) %>% # Make lines of 50 characters long.

cat # or writeLines (print shows "\n")

The quick brown fox jumps over the lazy dog. The

quick brown fox jumps over the lazy dog. The quick

brown fox jumps over the lazy dog. The quick brown

fox jumps over the lazy dog. The quick brown fox

jumps over the lazy dog.

© Dr. Philippe J.S. De Brouwer 47/156

Determining Order and Sorting Strings

str <- c("a", "z", "b", "c")

str_order informs about the order of strings (rank number):

str_order(str)

[1] 1 3 4 2

Sorting is done with str_sort:

str_sort(str)

[1] "a" "b" "c" "z"

© Dr. Philippe J.S. De Brouwer 48/156

Matching Regex Patterns with stringr

library(stringr) # or library(tidyverse)

sV <- c("philosophy", "physiography", "phis",

"Hello world", "Philippe", "Philosophy",

"physics", "philology")

Extracting substrings that match a regex pattern:

str_extract(sV, regex("Phi"))

[1] NA NA NA NA "Phi" "Phi" NA NA

str_extract(sV, "Phi") # the same, regex assumed

[1] NA NA NA NA "Phi" "Phi" NA NA

© Dr. Philippe J.S. De Brouwer 49/156

Further Regex Matching stringr

str_extract(sV, "(p|P)hi")

[1] "phi" NA "phi" NA "Phi" "Phi" NA "phi"

Or do it this way:

str_extract(sV, "(phi|Phi)")

[1] "phi" NA "phi" NA "Phi" "Phi" NA "phi"

This logic is easy to extend:

Match also i and y:

str_extract(sV, "(p|P)h(i|y)")

[1] "phi" "phy" "phi" NA "Phi" "Phi" "phy" "phi"

This is equivalent to:

str_extract(sV, "(phi|Phi|phy|Phy)")

[1] "phi" "phy" "phi" NA "Phi" "Phi" "phy" "phi"

© Dr. Philippe J.S. De Brouwer 50/156

Regex Syntax i

^ begin of string or line
$ endof string (or line)
\< beginning of a word
\> end of a word

Anchors
\n newline
\r carriage return)
\t tab
\v vertical tab
\f form feed

Special characters

. any character, but \n
[abc] accepted characters
[a-z] character range
(...) characters group

Character groups
? 0 or 1 times
* 0 or more
+ 1 or more
{n} n times
{n,m} between n and m times
{n,} n or more times
{,m} m or less times

Quantifiers

© Dr. Philippe J.S. De Brouwer 51/156

Regex Syntax ii

| “OR,” e.g. (a|b) matches a or b
\1 content of group one, e.g. r(\w)g(\1)x matches “regex”
\2 group two, e.g. r(\w)g(\1)x(\2)xpr matches “regexexpr”

(?:..) non capturing group = ignore that match in the string to return
[^a-d] “not”: no character in range a to d

Logic

a(?!b) a not followed by b
a(?=b) a if followed by b
(?<=b)a a if preceded by b
(?<!b)a a if not preceded by b

Lookaround – requires PERL = TRUE
\Qa\E treat a verbatim, e.g.

\QC++?\E matches “C++?”
\K drop match so far, e.g.

x\K\dreturns from
x1 only 1

Other

(?i) makes all matches case insensitive
(?s) single line mode: . also matches \n

(?m) multi line mode: ^ and $ become begin and end of line

Line modifiers

© Dr. Philippe J.S. De Brouwer 52/156

Regex Syntax iii

[[:digit:]] or \d digit: [0-9]
\\D not a digit: [^0-9]

[[:xdigit:]] or \x hexadec. digits: [0-9A-Fa-f]
[[:lower:]] lower-case: [a-z]
[[:upper:]] upper-case: [A-Z]
[[:alnum:]] alphanumeric: [A-z0-9]

\\w word characters: [A-z0-9_]
\\W not word characters: [^A-z0-9_]

[[:blank:]] blank: [\\s\\t]
[[:space:]] or \s space : \\s

\\S not space: [^\\s]
[[:punct:]] punctuation character :

!"#$%&'()*+,-./:;<=>?@[]^_`{}~|

[[:graph:]] graphical character :
[[:alnum:]] [[:punct:]]

[[:print:]] printable character :
[[:graph:]] [[:space:]]

[[:cntrl:]] or \c control characters: e.g. [\\n\\rt]

POSIX Character classes

© Dr. Philippe J.S. De Brouwer 53/156

Lazy and Greedy Quantifiers i

The basic rule is that a quantifier applies to whatever is immediately left of it. For example:

• abcd+ matches “abcdddd” but not “abcdabcd” (the + applies only to the last letter);
• this behaviour can be modified with grouping characters: x(F1)+ will match “xF1F1F1,” but also note that
• \QC++\E+ matches “C+++++’ but not “C+C+C+”

However, there are more nuances that need to be understood.

• The default quantifiers are greedy: \d+ will match 123 (as many digits as possible, not necessarily all the
same). In other words, a greedy quantifier gives you the longest possible match (eg, ^\.* will match always
the whole line). However, quantifiers are actually greedy, but with good manners. We mean with that the
engine will swallow as many matches as possible, but if that would hinder the rest of the pattern to be
matched, it will back-track to allow for a match. That is why ^\.*ippe will still match Philippe.
• A quantifier can be made reluctant or lazy by adding ? to it. For example, ^P\.*? will match as little as

possible within the possibilities of * (which is “zero or more” and hence defaults to “zero”).
• Actually, quantifiers might be reluctant or lazy but still benevolent. Meaning if the match was so small that

this would hinder the rest of the match to be made, then they will start matching more in order for the further
match to be made possible.

© Dr. Philippe J.S. De Brouwer 54/156

Lazy and Greedy Quantifiers ii

Below we illustrate these concepts with greedy and lazy pattern matching:

str_extract("Philippe", "Ph\\w*") # is greedy

[1] "Philippe"

str_extract("Philippe", "Ph\\w*?") # is lazy

[1] "Ph"

© Dr. Philippe J.S. De Brouwer 55/156

Regex for Humans with rex i

Regex expressions easily get hard to read. To solve that, there is a library rex that provides a function rex() to
make the process of creating a regular expression a lot easier and a lot more readable.

Load the library rex:

library(rex)

In this example we construct the regex to match a valid URL, and will

define the valid characters first:

valid_chars <- rex(one_of(regex('a-z0-9\u00a1-\uffff')))

© Dr. Philippe J.S. De Brouwer 56/156

Regex for Humans with rex ii

Then build the regex:

expr <- rex(

start, # start of the string: ^

Protocol identifier (optional) + //

group(list('http', maybe('s')) %or% 'ftp', '://'),

User: pass authentication (optional)

maybe(non_spaces,

maybe(':', zero_or_more(non_space)),

'@'),

Host name:

group(zero_or_more(valid_chars,

zero_or_more('-')),

one_or_more(valid_chars)),

Domain name:

zero_or_more('.',

zero_or_more(valid_chars,

zero_or_more('-')),

one_or_more(valid_chars)),

Top Level Domain (TLD) identifier

group('.', valid_chars %>% at_least(2)),

Server port number (optional)

maybe(':', digit %>% between(2, 5)),

Resource path (optional):

maybe('/', non_space %>% zero_or_more()),

end

)

© Dr. Philippe J.S. De Brouwer 57/156

Use the Regex created by rex

Now we have the regex stored in the variable expr and can use it:

Print the result elegantly:

substring(expr, seq(1, nchar(expr)-1, 40),

seq(41, nchar(expr), 40)) %>%

str_c(sep="\n")

[1] "^(?:(?:http(?:s)?|ftp)://)(?:[^[:space:]]"

[2] "]+(?::(?:[^[:space:]])*)?@)?(?:(?:[a-z0-9"

[3] "9Âą-\uffff](?:-)*)*(?:[a-z0-9Âą-\uffff])+)(?:\\.(?:[a-"

[4] "-z0-9Âą-\uffff](?:-)*)*(?:[a-z0-9Âą-\uffff])+)*(?:\\.("

[5] "(?:[a-z0-9Âą-\uffff]){2,})(?::(?:[[:digit:]]){2"

[6] ""

We can check if an URL is valid as follows:

for example:

str_extract("www.de-brouwer.com", expr)

[1] NA

str_extract("http://www.de-brouwer.com", expr)

[1] "http://www.de-brouwer.com"

str_extract("error=www.de-brouwer.com", expr)

[1] NA

© Dr. Philippe J.S. De Brouwer 58/156

Detect a Match

These functions will only report if a match is found, no information about starting positions of he match is given.

grep() returns the whole string if a match is found:

grep(pattern, string, value = TRUE)

[1] "one:1" "c5c5c5" "d123d" "123" "6"

The default for value is FALSE -> only returns indexes:

grep(pattern, string)

[1] 1 3 4 5 6

L for returning a logical variable:

grepl(pattern, string)

[1] TRUE FALSE TRUE TRUE TRUE TRUE

--- stringr ---

similar to grepl (note order of arguments!)

str_detect(string, pattern)

[1] TRUE FALSE TRUE TRUE TRUE TRUE

© Dr. Philippe J.S. De Brouwer 59/156

Locate a Match

In many cases, it is not enough to know if there is a match, but also where the match occurs in the string; that is
what we call “locating” a match in a string.
Locate the first match (the numbers are the position in the string):

regexpr (pattern, string)

[1] 5 -1 2 2 1 1

attr(,"match.length")

[1] 1 -1 1 1 1 1

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

grepexpr() finds all matches and returns a list:

gregexpr(pattern, string)

[[1]]

[1] 5

attr(,"match.length")

[1] 1

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

##

[[2]]

[1] -1

attr(,"match.length")

[1] -1

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

##

[[3]]

[1] 2 4 6

attr(,"match.length")

[1] 1 1 1

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

##

[[4]]

[1] 2 3 4

attr(,"match.length")

[1] 1 1 1

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

##

[[5]]

[1] 1 2 3

attr(,"match.length")

[1] 1 1 1

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

##

[[6]]

[1] 1

attr(,"match.length")

[1] 1

attr(,"index.type")

[1] "chars"

attr(,"useBytes")

[1] TRUE

--- stringr ---

Find the first match and returns a matrix:

str_locate(string, pattern)

start end

[1,] 5 5

[2,] NA NA

[3,] 2 2

[4,] 2 2

[5,] 1 1

[6,] 1 1

Find all matches and returns a list (same as grepexpr):

str_locate_all(string, pattern)

[[1]]

start end

[1,] 5 5

##

[[2]]

start end

##

[[3]]

start end

[1,] 2 2

[2,] 4 4

[3,] 6 6

##

[[4]]

start end

[1,] 2 2

[2,] 3 3

[3,] 4 4

##

[[5]]

start end

[1,] 1 1

[2,] 2 2

[3,] 3 3

##

[[6]]

start end

[1,] 1 1

© Dr. Philippe J.S. De Brouwer 60/156

Replace a Match

Often we want to do more than just finding where a match occurs, but we want to change it with something else.
This process is called “replacing” matches with strings.

First, we need additionally a replacement (repl)

repl <- "___"

sub() replaces the first match:

sub(pattern, repl, string)

[1] "one:___" "NO digit" "c___c5c5" "d___23d" "___23" "___"

gsub() replaces all matches:

gsub(pattern, repl, string)

[1] "one:___" "NO digit" "c___c___c___" "d_________d"

[5] "_________" "___"

--- stringr ---

str_replace() replaces the first match:

str_replace(string, pattern, repl)

[1] "one:___" "NO digit" "c___c5c5" "d___23d" "___23" "___"

str_replace_all() replaces all mathches:

str_replace_all(string, pattern, repl)

[1] "one:___" "NO digit" "c___c___c___" "d_________d"

[5] "_________" "___"

© Dr. Philippe J.S. De Brouwer 61/156

Extract

If it is not our aim to replace the match, then it might be the case that we want to extract it for further use and
manipulation in other sections or functions. The following functions allow to extract matches to regular
expressions. from strings. The output of these functions can be quite verbose such as the functions to locate
matches.
regmatches() with regexpr() will extract only the first match:

regmatches(string, regexpr(pattern, string))

[1] "1" "5" "1" "1" "6"

regmatches() with gregexpr() will extract all matches:

regmatches(string, gregexpr(pattern, string)) # all matches

[[1]]

[1] "1"

##

[[2]]

character(0)

##

[[3]]

[1] "5" "5" "5"

##

[[4]]

[1] "1" "2" "3"

##

[[5]]

[1] "1" "2" "3"

##

[[6]]

[1] "6"

--- stringr ---

Extract the first match:

str_extract(string, pattern)

[1] "1" NA "5" "1" "1" "6"

Similar as str_extract, but returns column instead of row:

str_match(string, pattern)

[,1]

[1,] "1"

[2,] NA

[3,] "5"

[4,] "1"

[5,] "1"

[6,] "6"

Extract all matches (list as return):

str_extract_all(string, pattern)

[[1]]

[1] "1"

##

[[2]]

character(0)

##

[[3]]

[1] "5" "5" "5"

##

[[4]]

[1] "1" "2" "3"

##

[[5]]

[1] "1" "2" "3"

##

[[6]]

[1] "6"

To get a neat matrix output, add simplify = T:

str_extract_all(string, pattern, simplify = TRUE)

[,1] [,2] [,3]

[1,] "1" "" ""

[2,] "" "" ""

[3,] "5" "5" "5"

[4,] "1" "2" "3"

[5,] "1" "2" "3"

[6,] "6" "" ""

Similar to str_extract_all (but returns column instead of row):

str_match_all(string, pattern)

[[1]]

[,1]

[1,] "1"

##

[[2]]

[,1]

##

[[3]]

[,1]

[1,] "5"

[2,] "5"

[3,] "5"

##

[[4]]

[,1]

[1,] "1"

[2,] "2"

[3,] "3"

##

[[5]]

[,1]

[1,] "1"

[2,] "2"

[3,] "3"

##

[[6]]

[,1]

[1,] "6"

© Dr. Philippe J.S. De Brouwer 62/156

Split Strings Using the Match as Separator

Finally, it might be useful to split strings based on a separator (for example file-names and file-extensions, dates,
etc.). This can be done with the function strsplit()

--- base-R ---

strsplit(string, pattern)

[[1]]

[1] "one:"

##

[[2]]

[1] "NO digit"

##

[[3]]

[1] "c" "c" "c"

##

[[4]]

[1] "d" "" "" "d"

##

[[5]]

[1] "" "" ""

##

[[6]]

[1] ""

--- stringr ---

str_split(string, pattern)

[[1]]

[1] "one:" ""

##

[[2]]

[1] "NO digit"

##

[[3]]

[1] "c" "c" "c" ""

##

[[4]]

[1] "d" "" "" "d"

##

[[5]]

[1] "" "" "" ""

##

[[6]]

[1] "" ""

© Dr. Philippe J.S. De Brouwer 63/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 17: Data Wrangling in the tidyverse

↓

section 6:

Dates with lubridate

© Dr. Philippe J.S. De Brouwer 64/156

Manipulating dates with lubridate

We will load the package here and show this part of the code only once. All sub-sections that follow will use this
package.

Load the tidyverse for its functionality such as pipes:

library(tidyverse)

Lubridate is not part of the core-tidyverse, so we need

to load it separately:

library(lubridate)

© Dr. Philippe J.S. De Brouwer 65/156

Date Format Conventions and Internal Storage

The first key concept is that of a date and a date-time. For most practical purposes, a date is something that can
be stored as yyyy-mmm-dd.

It can be noted that R follows the ISO 8601 Notation and so will we do. Any person who believes in inclusion and
not in imposing historical nation bound standards to the rest of the world will embrace the ISO standards, a
fortiori any programmer or modeller with an inclusive world-view will also use the ISO 8601 standards. But there
are many people who will not do this, and it is not uncommon to get dates in other formats or have to report
dates in those formats. So, the format that we will use is the ISO format: yyyy-mm-dd, but we will also show how
to convert to other systems.

Digression – R’s internal date-format

Internally, R will store date-times as a Unix timestamp or POSIXct format:

as.numeric(Sys.time()) # the number of seconds passed since 1 January 1970

[1] 1630480658

as.numeric(Sys.time()) / (60 * 60 * 24 * 365.2422)

[1] 51.66792

© Dr. Philippe J.S. De Brouwer 66/156

Converting Strings and Numbers to Dates i

There is a list of functions that convert to a date

mdy("04052018")

[1] "2018-04-05"

mdy("4/5/2018")

[1] "2018-04-05"

mdy("04052018")

[1] "2018-04-05"

mdy("4052018") # ambiguous formats are refused!

[1] NA

dmy("04052018") # same string, different date

[1] "2018-05-04"

© Dr. Philippe J.S. De Brouwer 67/156

Converting Strings and Numbers to Dates ii

Warning – Dates as numbers can be confusing

The functions of the family ymd() do not only take strings as input, they can also can take a numerical
input. This might lead to confusion as it is not what one would expect: the internal representation of a
date.

dt <- ymd(20180505) %>% print

[1] "2018-05-05"

as.numeric(dt)

[1] 17656

ymd(17656)

[1] NA

© Dr. Philippe J.S. De Brouwer 68/156

Timezones

Note it converts the system time-zone to UTC:

as_datetime("2006-07-22T14:00")

[1] "2020-06-07 22:14:00 UTC"

Force time-zone:

as_datetime("2006-07-22T14:00 UTC")

[1] "2020-06-07 22:14:00 UTC"

as_datetime("2006-07-22 14:00 Europe/Warsaw") #Fails silently!

[1] "2020-06-07 22:14:00 UTC"

dt <- as_datetime("2006-07-22 14:00", tz = "Europe/Warsaw") %>%

print

[1] "2020-06-07 22:14:00 CEST"

Get the same date-time numerals in a different time-zone:

force_tz(dt, "Pacific/Tahiti")

[1] "2020-06-07 22:14:00 -10"

Get the same cosmic moment in a new time-zone

with_tz(dt, "Pacific/Tahiti")

[1] "2020-06-07 10:14:00 -10"

© Dr. Philippe J.S. De Brouwer 69/156

Extract Date and Time Components

We will use the date from previous hint:

dt1

[1] "1890-12-29 08:00:00 MST"

year(dt) # extract the year

[1] 2020

month(dt) # extract the month

[1] 6

week(dt) # extract the week

[1] 23

day(dt) # extract the day

[1] 7

wday(dt) # extract the day of the week as number

[1] 1

qday(dt) # extract the day of the quarter as number

[1] 68

yday(dt) # extract the day of the year as number

[1] 159

hour(dt) # extract the hour

[1] 22

minute(dt) # extract the minutes

[1] 14

second(dt) # extract the seconds

[1] 0

quarter(dt) # extract the quarter

[1] 2

semester(dt) # extract the semester

[1] 1

am(dt) # TRUE if morning

[1] FALSE

pm(dt) # TRUE if afternoon

[1] TRUE

leap_year(dt) # TRUE if leap-year

[1] TRUE

© Dr. Philippe J.S. De Brouwer 70/156

Calculating with Date-Times: the Problems

moment1 <- as_datetime("2018-10-28 01:59:00", tz = "Europe/Warsaw")

moment2 <- as_datetime("2018-10-28 02:01:00", tz = "Europe/Warsaw")

moment2 - moment1 # Is it 2 minutes or 1 hour and 3 minutes?

Time difference of 1.033333 hours

moment3 <- as_datetime("2018-10-28 03:01:00", tz = "Europe/Warsaw")

The clocks were put back in this tz from 3 to 2am.

So, there is 2 hours difference between 2am and 3am!

moment3 - moment1

Time difference of 2.033333 hours

© Dr. Philippe J.S. De Brouwer 71/156

Calculating with Date-Times: the Concepts

1 Duration: A duration is the physical amount of time that has been elapsed between two events.

2 Periods: Track changes in clock times (so pretend that DST, leap seconds, and leap years do not exist).

3 Intervals: Periods of time defined by start and end date-time (duration or period can be extracted)

© Dr. Philippe J.S. De Brouwer 72/156

Calculating with Date-Times: Durations i

Calculate the duration in seconds:

dyears(x = 1/365)

[1] "86459.1780821918s (~1 days)"

dweeks(x = 1)

[1] "604800s (~1 weeks)"

ddays(x = 1)

[1] "86400s (~1 days)"

dhours(x = 1)

[1] "3600s (~1 hours)"

dminutes(x = 1)

[1] "60s (~1 minutes)"

dseconds(x = 1)

[1] "1s"

dmilliseconds(x = 1)

[1] "0.001s"

dmicroseconds(x = 1)

[1] "1e-06s"

dnanoseconds(x = 1)

[1] "1e-09s"

dpicoseconds(x = 1)

[1] "1e-12s"

© Dr. Philippe J.S. De Brouwer 73/156

Calculating with Date-Times: Durations ii

Note that a duration object times a number is again a Duration object

and it allows arithmetic:

dpicoseconds(x = 1) * 10^12

[1] "1s"

Investigate the object type:

dur <- dnanoseconds(x = 1)

class(dur)

[1] "Duration"

attr(,"package")

[1] "lubridate"

str(dur)

Formal class 'Duration' [package "lubridate"] with 1 slot

..@ .Data: num 1e-09

print(dur)

[1] "1e-09s"

© Dr. Philippe J.S. De Brouwer 74/156

Calculating with Date-Times: Durations iii
If the duration is not given in one number, but for example in with units expressed as a string, we can use the
function duration(). There is also a series of functions that can coerce to a duration, check if something is a
duration:
Useful for automation:

duration(5, unit = "years")

[1] "157788000s (~5 years)"

Coerce and logical:

dur <- dyears(x = 10)

as.duration(60 * 60 * 24)

[1] "86400s (~1 days)"

as.duration(dur)

[1] "315576000s (~10 years)"

is.duration(dur)

[1] TRUE

is.difftime(dur)

[1] FALSE

as.duration(dur)

[1] "315576000s (~10 years)"

make_difftime(60, units="minutes")

Time difference of 1 mins
© Dr. Philippe J.S. De Brouwer 75/156

Calculating with Date-Times: Periods

years(x = 1)

[1] "1y 0m 0d 0H 0M 0S"

months(x = 1)

[1] "1m 0d 0H 0M 0S"

weeks(x = 1)

[1] "7d 0H 0M 0S"

days(x = 1)

[1] "1d 0H 0M 0S"

hours(x = 1)

[1] "1H 0M 0S"

minutes(x = 1)

[1] "1M 0S"

seconds(x = 1)

[1] "1S"

milliseconds(x = 1)

[1] "0.001S"

microseconds(x = 1)

[1] "1e-06S"

nanoseconds(x = 1)

[1] "1e-09S"

picoseconds(x = 1)

[1] "1e-12S"

Investigate the object type:

per <- days(x = 1)

class(per)

[1] "Period"

attr(,"package")

[1] "lubridate"

str(per)

Formal class 'Period' [package "lubridate"] with 6 slots

..@ .Data : num 0

..@ year : num 0

..@ month : num 0

..@ day : num 1

..@ hour : num 0

..@ minute: num 0

print(per)

[1] "1d 0H 0M 0S"

For automations:

period(5, unit = "years")

[1] "5y 0m 0d 0H 0M 0S"

Coerce timespan to period:

as.period(5, unit="years")

[1] "5y 0m 0d 0H 0M 0S"

as.period(10)

[1] "10S"

p <- seconds_to_period(10) %>%

print

[1] "10S"

period_to_seconds(p)

[1] 10

Note – Period functions starting letter

The functions that create periods have no specific starting letter.

© Dr. Philippe J.S. De Brouwer 76/156

Calculating with Date-Times: the Intervals i

d1 <- ymd_hm("1939-09-01 09:00", tz = "Europe/Warsaw")

d2 <- ymd_hm("1945-08-15 12:00", tz = "Asia/Tokyo")

interval(d1, d2) # defines the interval

[1] 1939-09-01 09:00:00 CET--1945-08-15 05:00:00 CEST

Or use the operator %--%:

ww2 <- d1 %--% d2 # defines the same interval

ww2 / days(1) # the period expressed in days

[1] 2174.833

ww2 / ddays(1) # duration in terms of days

[1] 2174.792

The small difference is due to DST and equals one hour:

(ww2 / ddays(1) - ww2 / days(1)) * 24

[1] -1

Allow the interval to report on its length:

int_length(ww2) / 60 / 60 / 24

[1] 2174.792

© Dr. Philippe J.S. De Brouwer 77/156

Calculating with Date-Times: the Intervals ii

The package lubridate provides a set of functions that allow to check if a date is in an interval, move the
interval forward, etc.

© Dr. Philippe J.S. De Brouwer 78/156

Calculating with Date-Times: the Intervals iii

d_date <- ymd("19450430")

Is a date or interval in another:

d_date %within% ww2

[1] TRUE

ph <- interval(ymd_hm("1941-12-07 07:48", tz = "US/Hawaii"),

ymd_hm("1941-12-07 09:50", tz = "US/Hawaii")

)

ph %within% ww2 # is ph in ww2?

[1] TRUE

int_aligns(ph, ww2) # do ww2 and ph share start or end?

[1] FALSE

Shift forward or backward:

int_shift(ww2, years(1))

[1] 1940-09-01 09:00:00 CEST--1946-08-15 05:00:00 CEST

int_shift(ww2, years(-1))

[1] 1938-09-01 09:00:00 CET--1944-08-15 05:00:00 CEST

Swap start and end moment

flww2 <- int_flip(ww2)

Coerce all to "positive" (start-date before end-date)

int_standardize(flww2)

[1] 1939-09-01 09:00:00 CET--1945-08-15 05:00:00 CEST

Modify start or end date

int_start(ww2) <- d_date; print(ww2)

[1] 1945-04-30 02:00:00 CEST--1945-08-15 05:00:00 CEST

int_end(ww2) <- d_date; print(ww2)

[1] 1945-04-30 02:00:00 CEST--1945-04-30 02:00:00 CEST

© Dr. Philippe J.S. De Brouwer 79/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 17: Data Wrangling in the tidyverse

↓

section 7:

Factors with forcats

© Dr. Philippe J.S. De Brouwer 80/156

Building Data for an Example: Survey Data

set.seed(1911)

s <- tibble(reply = runif(n = 1000, min = 0, max = 13))

hml <- function (x = 0) {

if (x < 0) return(NA)

if (x <= 4) return("L")

if (x <= 8) return("M")

if (x <= 12) return("H")

return(NA)

}

surv <- apply(s, 1, FUN = hml) # output is a vector

surv <- tibble(reply = surv) # coerce back to tibble

surv

A tibble: 1,000 x 1

reply

<chr>

1 H

2 M

3 L

4 M

5 L

6 H

7 L

8 H

9 <NA>

10 L

... with 990 more rows

© Dr. Philippe J.S. De Brouwer 81/156

Building Data for an Example: Ordening the Labels

To put the labels in the right orders, we have to make clear to R that they are factors and that we have a specific
order for our factors. This can be done with the argument levels in the function parse_factor().

1. Define the factor-levels in the right order:

f_levels <- c("L", "M", "H")

2. Define our data as factors:

survey <- parse_factor(surv$reply, levels = f_levels)

© Dr. Philippe J.S. De Brouwer 82/156

Building Data for an Example: Visualizing the Data

summary(survey)

L M H <NA>

295 313 310 82

plot(survey, col="khaki3",

main = "Customer Satisfaction",

xlab = "Response to the last survey"

)

L M H

Customer Satisfaction

Response to the last survey

0
50

10
0

15
0

20
0

25
0

30
0

Figure 1: The standard plot function on a factored object with some values NA (last block without label).

© Dr. Philippe J.S. De Brouwer 83/156

The Functions of forcats: Counting Labels

Count the labels:

fct_count(survey)

Error: Tibble columns must have compatible sizes.

* Size 4: Existing data.

* Size 3: Column ‘n‘.

i Only values of size one are recycled.

© Dr. Philippe J.S. De Brouwer 84/156

The Functions of forcats: Changing Labels i

Relabel factors with fct_relabel:

HML <- function (x = NULL) {

x[x == "L"] <- "Low"

x[x == "M"] <- "Medium/High"

x[x == "H"] <- "Medium/High"

x[!(x %in% c("High", "Medium/High", "Low"))] <- NA

return(x)

}

f <- fct_relabel(survey, HML)

summary(f)

Low Medium/High <NA>

295 623 82

plot(f, col="khaki3",

main = "Only one third of customers is not happy",

xlab = "Response to the expensive survey"

)

© Dr. Philippe J.S. De Brouwer 85/156

The Functions of forcats: Changing Labels ii

Low Medium/High

Only one third of customers is not happy

Response to the expensive survey

0
10

0
20

0
30

0
40

0
50

0
60

0

Figure 2: Maybe you would prefer to show this plot to the board meeting? This plot takes the two best categories together and
creates the impression that more people are happy. Compare this to previous plot.

© Dr. Philippe J.S. De Brouwer 86/156

The Functions of forcats: More Examples i

num_obs <- 1000 # the number of observations in the survey

Start from a new survey: srv

srv <- tibble(reply = 1:num_obs)

srv$age <- rnorm(num_obs, mean=50,sd=20)

srv$age[srv$age < 15] <- NA

srv$age[srv$age > 85] <- NA

hml <- function (x = 0) {

if (x < 0) return(NA)

if (x <= 4) return("L")

if (x <= 8) return("M")

if (x <= 12) return("H")

return(NA)

}

for (n in 1:num_obs) {

if (!is.na(srv$age[n])) {

srv$reply[n] <- hml(rnorm(n = 1, mean = srv$age[n] / 7, sd = 2))

}

else {

srv$reply[n] <- hml(runif(n = 1, min = 1, max = 12))

}

}

f_levels <- c("L", "M", "H")

srv$fct <- parse_factor(srv$reply, levels = f_levels)

© Dr. Philippe J.S. De Brouwer 87/156

The Functions of forcats: More Examples ii

Now that we have the data of the survey, we can showcase forcats and use it to visualize and manipulate the
data.

From most frequent to least frequent:

srv$fct %>%

fct_infreq(ordered = TRUE) %>%

levels()

[1] "M" "H" "L" NA

From least frequent to more frequent:

srv$fct %>%

fct_infreq %>%

fct_rev %>%

levels

[1] NA "L" "H" "M"

Reorder the reply variable in function of median age:

fct_reorder(srv$reply, srv$age) %>%

levels

[1] "H" "L" "M"

© Dr. Philippe J.S. De Brouwer 88/156

The Functions of forcats: More Examples iii

Add the function min() to order based on the minimum

age in each group (instead of default median):

fct_reorder(srv$reply, srv$age, min) %>%

levels

[1] "H" "L" "M"

© Dr. Philippe J.S. De Brouwer 89/156

The Functions of forcats: More Examples iv

Show the means per class of satisfaction in base-R style:

by(srvage, srvfct, mean, na.rm = TRUE)

srv$fct: L

[1] 30.65112

--

srv$fct: M

[1] 44.41898

--

srv$fct: H

[1] 60.01358

--

srv$fct: NA

[1] 62.67211

Much more accessible result with the dplyr:

satisf <- srv %>%

group_by(fct) %>%

summarize(

age = median(age, na.rm = TRUE),

n = n()

) %>%

print

A tibble: 4 x 3

fct age n

<fct> <dbl> <int>

1 L 29.9 173

2 M 43.6 432

3 H 61.0 328

4 <NA> 72.4 67

Show the impact of age on satisfaction visually:

par(mfrow = c(1,2))

barplot(satisf$age, horiz=TRUE, names.arg = satisf$fct,

col=c("khaki3","khaki3","khaki3","red"),

main = "Median age per group")

barplot(satisf$n, horiz = TRUE, names.arg = satisf$fct,

col=c("khaki3","khaki3","khaki3","red"),

main = "Frequency per group")

L
M

H

Median age per group

0 10 30 50 70

L
M

H

Frequency per group

0 100 200 300 400

Figure 3: A visualisation of how the age of customers impacted the satisfaction in our made-up example. The NA values have
been highlighted in red.

© Dr. Philippe J.S. De Brouwer 90/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling
↓

chapter 18:

Dealing with Missing Data

© Dr. Philippe J.S. De Brouwer 91/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 18: Dealing with Missing Data

↓

section 1:

Reasons for Data to be Missing

© Dr. Philippe J.S. De Brouwer 92/156

Missing Data: reasons

Typically data is missing for one of the following reasons:

1 input and pre-processing (e.g. conversion of units: some dates were in American format, others in UK
format, some dates got misunderstood and others rejected; a decimal comma is not understood, data is
copied to a system that does not recognize large number, etc.);

2 unclear or incomplete formulated questions (e.g. asking “are you male or female?”, while the possible
answers in the questionnaire are “yes” and “no”);

3 fraud or other intend (if we know that young males will pay higher for a car insurance we might omit the box
where the gender is put);

4 random reason (e.g. randomly skipped a question, interruption of financial markets due to external reason,
mistake, typing a number too much, etc.)

© Dr. Philippe J.S. De Brouwer 93/156

Examples of Unclear questions

Example (Unclear questions)

Often, data is missing because questionnaires are written carelessly and formulated ambiguously. What to think
about questions such as these:

1 rate the quality of the printed materials (1 . . . 5);

2 parent name, student name, study level;

3 it is never so that the teacher is too late: yes/no;

4 is the DQP sufficient to monitor the IMRDP and in line with GADQP? yes/no

5 I belong to a minority group (when applying for a job).

These example questions have – at least – the following issues.

1 The reader will assume that this question is there because the teacher will be assessed on the quality of
printed materials and it also assumes that the student cares. Which is an assumption, that should be asked
first. What would you do with this question if you did not want printed materials in the first place? Another
common mistake is asking “how important are printed materials?” – also this question does not help to find
whethere people assess the printed materials as positive or negative.

2 Whose study level are we asking here? That of the student or that of the parent?

3 Assume that the teacher is often late, then you can answer both “yes” or “no,” assume the opposite and the
same holds. So what to answer?

4 This question has two common problems. First, it uses acronyms that might not be clear to everyone;
second, it combines two separate issues – being sufficient and compliance with some rules – into one
yes/no question. What would you answer if only one of the two is true?

5 Some people might not want to fill in this question because they feel it should be irrelevant. Would you
expect the propensity to leave this question open to depend on the racial group to which one belongs?

© Dr. Philippe J.S. De Brouwer 94/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 18: Dealing with Missing Data

↓

section 2:

Methods to Handle Missing Data

© Dr. Philippe J.S. De Brouwer 95/156

Alternative solutions to missing data i

1 Leave out the rows with missing data. If there is no underlying reason why data is missing, then leaving out
the missing data is most probably harmless. This will work fine if the dataset is sufficiently large and of
sufficient quality (even a dataset with hundred thousand lines but with 500 columns can lead to problems
when we leave out all rows that miss one data point).

2 Carefully leave out rows with missing data. Same as above, but first make up our mind which variable will be
in the model and then only leave out those rows that miss data on those rows.

3 Somehow fill in the missing data based on some rules or models. For example, we can replace the missing
value by:

1 the mean value for that column;
2 median value for that column;
3 conditional mean or median (e.g. fill in missing value for height with gender based mean) where some pre-existing

logic or clear and well accepted rules hold;
4 an educated guess (e.g. someone who scored all requested dimensions as “4/5” probably intended the missing value

for “quality of printed materials” to be a “4/5” as well);
5 the mid-value (if that makes sense for example the “3/5” could be a mid-value for “rate on a scale from 1 to 5”), this

means choosing the middle of the possible values regardless which values occur more;
6 replace the missing value by a more complex model, eventually based on machine learning, such as:

• regression substitution, which tries to guess the missing value based on a multiple linear regression on other variables,
• multiple imputation, which uses statistical methods to guess plausible values based on the data that is not missing (linear

regression or machine learning) and then reset averages of the variables back by adding random errors in the predictions.

© Dr. Philippe J.S. De Brouwer 96/156

The Example Used in the Remainder of this Section

Example

For the purpose of this example, we will use this database and introduce some missing values.

set.seed(1890)

Get the data:

d1 <- d0 <- iris

Introduce the missing values:

i <- sample(1:nrow(d0), round(0.20 * nrow(d0)))

d1[i,1] <- NA

i <- sample(1:nrow(d0), round(0.30 * nrow(d0)))

d1[i,2] <- NA

Show a part of the resulting dataset:

head(d1, n=10L)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 NA NA 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

7 4.6 NA 1.4 0.3 setosa

8 NA NA 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

10 4.9 3.1 1.5 0.1 setosa

© Dr. Philippe J.S. De Brouwer 97/156

Predictive mean matching — PMM

For each observation that has a variable with a missing value, the method finds an observation (that has no
missing value on this variable) with the closest predictive mean to that variable. The observed value from this
observation is used as imputed value. This means that it preserves automatically many important characteristics
such as skew, boundness (e.g. only positive data), base type (e.g. integer values only), etc.

© Dr. Philippe J.S. De Brouwer 98/156

The PMM Process

The PMM process is as follows:

1 Take all observations that have no missing values and fit a linear regression of variable x – that has the
missing values – to one or more variables y, and produce a set of coefficients b.

2 Draw random coefficients b∗ from the posterior predictive distribution of b. Typically, this would be a
random draw from a multivariate normal distribution with mean b and the estimated covariance matrix of b
(with an additional random draw for the residual variance). This step will ensure that there is sufficient
variability in the imputed values.

3 Using b∗ , generate predicted values for x for all cases (as well for those that have missing values in x as
those that do not.

4 For each observation with missing x, identify a set of cases with observed x whose predicted values are
close to the predicted value for the observation with missing data.

5 From those observations, randomly choose one and assign its observed value as value to be imputed to the
missing x.

6 Repeat steps 2 – 5 till all the missing variables for x have an impute candidate.

7 Repeat steps 1 – 6 for all variables that have missing values.

© Dr. Philippe J.S. De Brouwer 99/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 18: Dealing with Missing Data

↓

section 3:

R Packages to Deal with Missing Data

© Dr. Philippe J.S. De Brouwer 100/156

mice i

#install.packages('mice') # uncomment if necessary

library(mice) # load the package

mice provides the improved visualization function md.pattern():

md.pattern(d1) # function provided by mice

© Dr. Philippe J.S. De Brouwer 101/156

mice ii

Petal.Length

0

Petal.Width

0

Species

0

Sepal.Length

30

Sepal.Width

45

212

118

133

087

75

Figure 4: The visualization of missing data with the function md.pattern() of the package mice. This simple visualisation shows
the contingents of data with missing values.

© Dr. Philippe J.S. De Brouwer 102/156

mice iii

Petal.Length Petal.Width Species Sepal.Length Sepal.Width

87 1 1 1 1 1 0

33 1 1 1 1 0 1

18 1 1 1 0 1 1

12 1 1 1 0 0 2

0 0 0 30 45 75

The table shows that the dataset d1 has 87 complete cases, 33 missing observations in Sepal.Width, 18
observations, where Sepal.Length is missing, and 12 cases where both are missing.

© Dr. Philippe J.S. De Brouwer 103/156

Imputing data with mice

d2_imp <- mice(d1, m = 5, maxit = 25, method = 'pmm', seed = 1500)

This created five possible datasets and we can select one completed set as follows.

Choose set number 3:

d3_complete <- complete(d2_imp, 3)

© Dr. Philippe J.S. De Brouwer 104/156

missForest i

install.packages('missForest') # only first time

library(missForest) # load the library

d_mf <- missForest(d1) # using the same data as before

missForest iteration 1 in progress...done!

missForest iteration 2 in progress...done!

missForest iteration 3 in progress...done!

missForest iteration 4 in progress...done!

missForest iteration 5 in progress...done!

missForest iteration 6 in progress...done!

missForest iteration 7 in progress...done!

access the imputed data in the ximp attribute:

head(d_mf$ximp)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.100000 3.500000 1.4 0.2 setosa

2 4.900000 3.000000 1.4 0.2 setosa

3 4.516867 3.205947 1.3 0.2 setosa

4 4.600000 3.100000 1.5 0.2 setosa

5 5.000000 3.600000 1.4 0.2 setosa

6 5.400000 3.900000 1.7 0.4 setosa

normalized MSE of imputation:

d_mf$OOBerror

NRMSE PFC

0.1080024 0.0000000

© Dr. Philippe J.S. De Brouwer 105/156

missForest ii

© Dr. Philippe J.S. De Brouwer 106/156

Hmisc i

Install the package first via:

install.packages('Hmisc')

library(Hmisc)

impute using mean:

SepLImp_mean <- with(d1, impute(Sepal.Length, mean))

impute a randomly chosen value:

SepLImp_rand <- with(d1, impute(Sepal.Length, 'random'))

impute the maximum value:

SepLImp_max <- with(d1, impute(Sepal.Length, max))

impute the minimum value:

SepLImp_min <- with(d1, impute(Sepal.Length, min))

note the '*' next to the imputed values"

head(SepLImp_min, n = 10L)

1 2 3 4 5 6 7 8 9 10

5.1 4.9 4.3* 4.6 5.0 5.4 4.6 4.3* 4.4 4.9

© Dr. Philippe J.S. De Brouwer 107/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling
↓

chapter 19:

Data Binning

© Dr. Philippe J.S. De Brouwer 108/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 19: Data Binning

↓

section 1:

What is Binning and Why Use It

© Dr. Philippe J.S. De Brouwer 109/156

Histograms are a Binning Method

Consider the following simple example where we start with data drawn from a known distribution and plot the
histogram (the output of this code is in Figure 5):
set.seed(1890)

d <- rnorm(90)

par(mfrow=c(1,2))

hist(d, breaks=70, col="khaki3")

hist(d, breaks=12, col="khaki3")

Histogram of d

d

Fr
eq

ue
nc

y

−2 −1 0 1 2

0
1

2
3

4
5

Histogram of d

d

Fr
eq

ue
nc

y
−2 −1 0 1 2

0
5

10
15

20
25

Figure 5: Two histograms of the same dataset. The histogram with less bins (right) is easier to read and reveals more clearly the
underlying model (Gaussian distribution). Using more bins (as in the left plot) can over-fit the dataset and obscure the true
distribution.

© Dr. Philippe J.S. De Brouwer 110/156

Binning with the Function cut()

Try a possible cut

c <- cut(d, breaks = c(-3, -1, 0, 1, 2, 3))

table(c)

c

(-3,-1] (-1,0] (0,1] (1,2] (2,3]

9 34 37 7 3

This is not good, it will not make solid predictions for the last bin.

So, we neet to use other bins:

c <- cut(d, breaks = c(-3, -0.5, 0.5, 3))

table(c)

c

(-3,-0.5] (-0.5,0.5] (0.5,3]

27 41 22

We have now a similar number of observations in each bin.

Is that the only thing to think about?

© Dr. Philippe J.S. De Brouwer 111/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 19: Data Binning

↓

section 2:

Tuning the Binning Procedure

© Dr. Philippe J.S. De Brouwer 112/156

Generating the Data for this Section i

set.seed(1890)

age <- rlnorm(1000, meanlog = log(40), sdlog = log(1.3))

y <- rep(NA, length(age))

for(n in 1:length(age)) {

y[n] <- max(0,

dnorm(age[n], mean= 40, sd=10)

+ rnorm(1, mean = 0, sd = 10 * dnorm(age[n],

mean= 40, sd=15)) * 0.075)

}

y <- y / max(y)

plot(age, y,

pch = 21, col = "blue", bg = "red",

xlab = "age",

ylab = "spending ratio"

)

© Dr. Philippe J.S. De Brouwer 113/156

Generating the Data for this Section ii

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

20 30 40 50 60 70 80 90

0.0
0.2

0.4
0.6

0.8
1.0

age

sp
en

din
g r

ati
o

Figure 6: A plot of the fabricated dataset with the spending ratio in function of the age of the customers. The spending ratio is
defined as Sn

Sn−1+Sn
, where Sn is the spending in period n. If both spends are 0, then the spending ratio is defined as 0.

© Dr. Philippe J.S. De Brouwer 114/156

Generating the Data for this Section iii

Assume this data is:

age = age of customer

spending_ratio = R : = S_n/ (S_{n-1} + S_n)

(zero if both are zero)

with S_n the spending in month n

dt <- tibble (age = age, spending_ratio = y)

© Dr. Philippe J.S. De Brouwer 115/156

Selection of bin borders i

Leave out NAs (in this example redundant):

d1 <- dt[complete.cases(dt),]

order() returns sorted indices, so this orders the vector:

d1 <- d1[order(d1$age),]

Fit a loess:

d1_loess <- loess(spending_ratio ~ age, d1)

Add predictions:

d1_pred_loess <- predict(d1_loess)

Plot the results:

par(mfrow=c(1,2))

plot(d1$age, d1$spending_ratio, pch=16,

xlab = 'age', ylab = 'spending ratio')

lines(d1$age, d1_pred_loess, lwd = 7, col = 'dodgerblue4')

hist(d1$age, col = 'dodgerblue4', xlab = 'age')

© Dr. Philippe J.S. De Brouwer 116/156

Selection of bin borders ii

●
●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●●

●
●

●

●
●●●

●

●

●

●

●

●

●●

●
●●

●

●

●●

●●●
●

●

●
●
●
●●●
●

●

●●
●
●●

●●

●

●
●

●

●
●●●
●
●●●●●●●

●
●●●
●
●●●●● ●

20 40 60 80

0.0
0.2

0.4
0.6

0.8
1.0

age

sp
en

din
g r

ati
o

Histogram of d1$age

age

Fr
eq

ue
nc

y

20 40 60 80

0
50

10
0

15
0

20
0

Figure 7: A simple aid to select binning borders is plotting a non-parametric fit (left) and the histogram (right). The information
from both plots combined can be used to decide on binning.

par(mfrow=c(1,1))

© Dr. Philippe J.S. De Brouwer 117/156

Further Observations in this Example

From the histogram and loess estimate in Figure 7 on slide 117, we can see that:

• the spending ratio does not simply increase or decrease with age – the relation is non-linear;
• the local volatility is not constant (the dataset is “heteroscedastic”);
• we have little young customers and little older ones (it even looks as if some of those have a definite reason

to be inactive on our Internet-shop).

© Dr. Philippe J.S. De Brouwer 118/156

A Model Without Binning i

To illustrate the effect of binning, we will use a logistic regression.1 First, without binning and then with binning.
Fitting the logistic regression worsk as follows:

Fit the logistic regression directly on the data without binning:

lReg1 <- glm(formula = spending_ratio ~ age,

family = quasibinomial,

data = dt)

© Dr. Philippe J.S. De Brouwer 119/156

A Model Without Binning ii

Investigate the model:

summary(lReg1)

##

Call:

glm(formula = spending_ratio ~ age, family = quasibinomial, data = dt)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-0.96344 -0.35725 -0.03202 0.25994 1.62106

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.09892 0.11733 -0.843 0.399

age -0.02107 0.00282 -7.473 1.71e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for quasibinomial family taken to be 0.1652355)

##

Null deviance: 195.63 on 999 degrees of freedom

Residual deviance: 185.93 on 998 degrees of freedom

AIC: NA

##

Number of Fisher Scoring iterations: 4

Calculate predictions and means square error:

pred1 <- 1 / (1 + exp(-(coef(lReg1)[1] + dt$age * coef(lReg1)[2])))

SE1 <- (pred1 - dt$spending_ratio)^2

MSE1 <- sum(SE1) / length(SE1)
© Dr. Philippe J.S. De Brouwer 120/156

A Model with Binning i

Inspired by Figure 7 on slide 117, we can make an educated guess of what bins would make sense. We choose
bins that capture the dynamics of our data and make sure to have a bin for values with high spending rations and
bins that have low spending ratios.
Now, we will introduce a simple data binning, calculate the logistic mode and show the results:
Bin the variable age:

c <- cut(dt$age, breaks = c(15, 30, 55, 90))

Check the binning:

table(c)

c

(15,30] (30,55] (55,90]

118 781 101

We have one big bucket and two smaller (with the smallest

more than 10% of our dataset.

lvls <- unique(c) # find levels

lvls # check levels order

[1] (30,55] (15,30] (55,90]

Levels: (15,30] (30,55] (55,90]

Create the tibble (a data-frame also works):

dt <- as_tibble(dt) %>%

mutate(is_L = if_else(age <= 30, 1, 0)) %>%

mutate(is_H = if_else(age > 55 , 1, 0))

Fit the logistic regression with is_L and is_H:

(is_M is not used because it is correlated with the previous)

lReg2 <- glm(formula = spending_ratio ~ is_L + is_H,

family = quasibinomial, data = dt)

© Dr. Philippe J.S. De Brouwer 121/156

A Model with Binning ii

Investigate the logistic model:

summary(lReg2)

##

Call:

glm(formula = spending_ratio ~ is_L + is_H, family = quasibinomial,

data = dt)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-0.88247 -0.31393 -0.03812 0.22173 1.50439

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.74222 0.02791 -26.595 <2e-16 ***
is_L -0.85871 0.09404 -9.132 <2e-16 ***
is_H -2.20235 0.16876 -13.050 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for quasibinomial family taken to be 0.132909)

##

Null deviance: 195.63 on 999 degrees of freedom

Residual deviance: 144.92 on 997 degrees of freedom

AIC: NA

##

Number of Fisher Scoring iterations: 5

Calculate predictions for our model and calculate MSE:

pred2 <- 1 / (1+ exp(-(coef(lReg2)[1] + dt$is_L * coef(lReg2)[2]

+ dt$is_H * coef(lReg2)[3])))

SE2 <- (pred2 - dt$spending_ratio)^2

MSE2 <- sum(SE2) / length(SE2)

© Dr. Philippe J.S. De Brouwer 122/156

A Model with Binning iii

Finally, we can compare the MSE of both models:

Compare the MSE of the two models:

MSE1

[1] 0.03294673

MSE2

[1] 0.02603179

We see that indeed the mean square error (MSE) is improved.2 That is great: our model will make better
predictions. However, what is even more important: the significance of our coefficients is up: we have now 3
stars for each and the significance of the intercept is up from 0 to 3 stars. That means that the model 2 is much
more significant and hence robust to predict the future.

© Dr. Philippe J.S. De Brouwer 123/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 19: Data Binning

↓

section 3:

More Complex Cases: Matrix Binning

© Dr. Philippe J.S. De Brouwer 124/156

Generating the Data for Matrix Binning i

© Dr. Philippe J.S. De Brouwer 125/156

Generating the Data for Matrix Binning ii

Load libraries and define parameters:

library(tidyverse) # provides tibble (only used in next block)

set.seed(1880) # to make results reproducible

N <- 500 # number of rows

Ladies first:

age will function as our x-value:

age_f <- rlnorm(N, meanlog = log(40), sdlog = log(1.3))

x is a temporary variable that will become the propensity to buy:

x_f <- abs(age_f + rnorm(N, 0, 20)) # Add noise & keep positive

x_f <- 1 - (x_f - min(x_f)) / max(x_f) # Scale between 0 and 1

x_f <- 0.5 * x_f / mean(x_f) # Coerce mean to 0.5

This last step will produce some outliers above 1

x_f[x_f > 1] <- 1 # Coerce those few that are too big to 1

Then the gentlemen:

age_m <- rlnorm(N, meanlog = log(40), sdlog = log(1.3))

x_m <- abs(age_m + rnorm(N, 0, 20)) # Add noise & keep positive

x_m <- 1 - (x_m - min(x_m)) / max(x_m) # Scale between 0 and 1

x_m <- 0.5 * x_m / mean(x_m) # Coerce mean to 0.5

This last step will produce some outliers above 1

x_m[x_m > 1] <- 1 # Coerce those few that are too big to 1

x_m <- 1 - x_m # relation to be increasing

Rename (p_x is not the gendered propensity to buy)

p_f <- x_f

p_m <- x_m

We can now visualise this data with a scatter-plot (see Figure 8 on slide 126):
We want a double plot, so change plot params & save old values:

oldparams <- par(mfrow=c(1,2))

plot(age_f, p_f,

pch = 21, col = "blue", bg = "red",

xlab = "Age",

ylab = "Spending probability",

main = "Females"

)

plot(age_m, p_m,

pch = 21, col = "blue", bg = "red",

xlab = "Age",

ylab = "Spending probability",

main = "Males"

)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●●

● ●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

20 40 60 80

0.0
0.2

0.4
0.6

Females

Age

Sp
en

din
g p

rob
ab

ilit
y

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

20 40 60 80

0.2
0.4

0.6
0.8

1.0

Males

Age

Sp
en

din
g p

rob
ab

ilit
y

Figure 8: The underlying relation between spending probability for females (left) and males (right) in our fabricated example.

par(oldparams) # Reset the plot parameters after plotting

© Dr. Philippe J.S. De Brouwer 126/156

Step 2 to Create the Data: Merge the Sets i

This first step was only to prepare the data and show what is exactly inside. In the next step, we will merge the
data, and assume that this merged data set is what we got to work with. The following block of code will do this
and then plot the histogram for the all observations (combined males and females) in Figure 9 on slide 128:

tf <- tibble("age" = age_f, "sex" = "F", "is_good" = p_f)

tm <- tibble("age" = age_m, "sex" = "M", "is_good" = p_m)

t <- full_join(tf, tm, by = c("age", "sex", "is_good"))

Change plot parameters and capture old values:

oldparams <- par(mfrow=c(1,2))

plot(tage, tis_good,

pch = 21, col = "black", bg = "khaki3",

xlab = "Age",

ylab = "Spending probability",

main = "Dependence on age"

)

fct_sex <- factor(t$sex, levels=c("F","M"), labels=c(0,1))

t$sexM <- as.numeric(fct_sex) # store for later use

plot(fct_sex, t$is_good,

col="khaki3",

main="Dependence on sex",

xlab="Female Male")

© Dr. Philippe J.S. De Brouwer 127/156

Step 2 to Create the Data: Merge the Sets ii

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●●

● ● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

20 40 60 80

0.0
0.2

0.4
0.6

0.8
1.0

Dependence on age

Age

Sp
en

din
g p

rob
ab

ilit
y

●

●

●
●●

●

0 1

0.0
0.2

0.4
0.6

0.8
1.0

Dependence on sex

Female Male

y

Figure 9: The dataset “as received from the customer service department” does not show any clear relationship between Age or
Sex and the variable that we want to explain: the spending ratio.

par(oldparams) # Reset the plot parameters

© Dr. Philippe J.S. De Brouwer 128/156

Visualize the Fabricated Data i

d1 <- t[complete.cases(t),]

d1 <- d1[order(d1$age),]

d1_age_loess <- loess(is_good ~ age, d1)

d1_age_pred_loess <- predict(d1_age_loess)

d1 <- d1[order(d1$sexM),]

d1_sex_loess <- loess(is_good ~ sexM, d1)

d1_sex_pred_loess <- predict(d1_sex_loess)

Plot the results:

par(mfrow=c(2,2))

d1 <- d1[order(d1$age),]

plot(d1$age, d1$is_good, pch=16,

xlab = 'Age', ylab = 'Spending probability')

lines(d1$age, d1_age_pred_loess, lwd = 7, col = 'dodgerblue4')

hist(d1$age, col = 'khaki3', xlab = 'age')

d1 <- d1[order(d1$sexM),]

plot(d1$sexM, d1$is_good, pch=16,

xlab = 'Gender', ylab = 'Spending probability')

lines(d1$sexM, d1_sex_pred_loess, lwd = 7, col = 'dodgerblue4')

hist(d1$sexM, col = 'khaki3', xlab = 'gender')

© Dr. Philippe J.S. De Brouwer 129/156

Visualize the Fabricated Data ii

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●
●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●
●
●
●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●●

●

●

●

●
●

●
●●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●●●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●●
●
●
●

●
●
●

●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●
●

●
●

●
●
●

●

●

●

●●

●

●

●●

●

●

●
●●

●

●

●

●

●
●
●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●●

●

●

●●
●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●
●
●

●

●

●

●●

●
●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●

●

●●●●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

20 40 60 80

0.0
0.2

0.4
0.6

0.8
1.0

Age

Sp
en

din
g p

rob
ab

ilit
y

Histogram of d1$age

age

Fr
eq

ue
nc

y

20 40 60 80

0
50

10
0

15
0

20
0

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●
●●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●
●
●●●

●

●
●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●
●●

●●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●
●

●

●

●●

●

●

●

●
●
●

●

●
●
●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●

●●
●

●

●

●●

●

●●

●
●

●
●

●
●

●●
●

●

●●

●

●

●
●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●
●●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●
●

●

●
●

●

●●

●

●
●
●

●
●●

●

●

●

●

●

●

●●
●

●●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●
●
●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●

●●●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●
●

●

●
●

●

●

●
●
●
●
●
●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●
●

●

●●
●
●●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●●

●

●

●
●
●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

1.0 1.2 1.4 1.6 1.8 2.0

0.0
0.2

0.4
0.6

0.8
1.0

Gender

Sp
en

din
g p

rob
ab

ilit
y

Histogram of d1$sexM

gender

Fr
eq

ue
nc

y

1.0 1.2 1.4 1.6 1.8 2.0

0
10

0
20

0
30

0
40

0
50

0

Figure 10: The data does not reveal much patterns for any of the variables (Gender and Age).

par(mfrow=c(1,1))

© Dr. Philippe J.S. De Brouwer 130/156

Model 1: a Logistic Regression i

Note that we can feed "sex" into the model and it will create

for us a variable "sexM" (meaning the same as ours)

To avoid this confusion, we put in our own variable.

regr1 <- glm(formula = is_good ~ age + sexM,

family = quasibinomial,

data = t)

© Dr. Philippe J.S. De Brouwer 131/156

Model 1: a Logistic Regression ii

assess the model:

summary(regr1)

##

Call:

glm(formula = is_good ~ age + sexM, family = quasibinomial, data = t)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-1.15510 -0.21981 0.00556 0.20597 1.14979

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.990e-02 9.133e-02 -0.765 0.444

age 1.684e-03 1.680e-03 1.002 0.316

sexM 6.015e-05 3.730e-02 0.002 0.999

##

(Dispersion parameter for quasibinomial family taken to be 0.08694359)

##

Null deviance: 91.316 on 999 degrees of freedom

Residual deviance: 91.229 on 997 degrees of freedom

AIC: NA

##

Number of Fisher Scoring iterations: 3

pred1 <- 1 / (1+ exp(-(coef(regr1)[1] + t$age * coef(regr1)[2]

+ t$sexM * coef(regr1)[3])))

SE1 <- (pred1 - t$is_good)^2

MSE1 <- sum(SE1) / length(SE1)
© Dr. Philippe J.S. De Brouwer 132/156

Model 2: a Binned Variable that Combines Sex and Age i

1. Check the potential cut:

c <- cut(t$age, breaks = c(min(t$age), 35, 55, max(t$age)))

table(c)

c

(17.9,35] (35,55] (55,94.2]

300 591 108

© Dr. Philippe J.S. De Brouwer 133/156

Model 2: a Binned Variable that Combines Sex and Age ii

2. Create the matrix variables:

t <- as_tibble(t) %>%

mutate(is_LF = if_else((age <= 35) & (sex == "F"), 1L, 0L)) %>%

mutate(is_HF = if_else((age > 50) & (sex == "F"), 1L, 0L)) %>%

mutate(is_LM = if_else((age <= 35) & (sex == "M"), 1L, 0L)) %>%

mutate(is_HM = if_else((age > 50) & (sex == "M"), 1L, 0L)) %>%

print

A tibble: 1,000 x 8

age sex is_good sexM is_LF is_HF is_LM is_HM

<dbl> <chr> <dbl> <dbl> <int> <int> <int> <int>

1 44.3 F 0.564 1 0 0 0 0

2 38.3 F 0.636 1 0 0 0 0

3 38.9 F 0.552 1 0 0 0 0

4 58.5 F 0.351 1 0 1 0 0

5 31.5 F 0.623 1 1 0 0 0

6 48.4 F 0.487 1 0 0 0 0

7 28.9 F 0.552 1 1 0 0 0

8 29.9 F 0.493 1 1 0 0 0

9 30.1 F 0.549 1 1 0 0 0

10 51.1 F 0.241 1 0 1 0 0

... with 990 more rows

© Dr. Philippe J.S. De Brouwer 134/156

Model 2: a Binned Variable that Combines Sex and Age iii

3. Check if the final bins aren't too small:

t[,5:8] %>% map_int(sum)

is_LF is_HF is_LM is_HM

154 104 147 101

© Dr. Philippe J.S. De Brouwer 135/156

Model 2: a Logistic Regression with a Variable that Combines Sex and Age i

regr2 <- glm(formula = is_good ~ is_LF + is_HF + is_LM + is_HM,

family = quasibinomial,

data = t)

© Dr. Philippe J.S. De Brouwer 136/156

Model 2: a Logistic Regression with a Variable that Combines Sex and Age ii

Assess the model:

summary(regr2)

##

Call:

glm(formula = is_good ~ is_LF + is_HF + is_LM + is_HM, family = quasibinomial,

data = t)

##

Deviance Residuals:

Min 1Q Median 3Q Max

-0.98606 -0.18858 -0.00424 0.18159 0.98651

##

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.01768 0.02467 -0.716 0.474

is_LF 0.27945 0.05094 5.485 5.23e-08 ***
is_HF -0.35564 0.06002 -5.925 4.29e-09 ***
is_LM -0.22844 0.05183 -4.408 1.16e-05 ***
is_HM 0.45028 0.06106 7.375 3.46e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

(Dispersion parameter for quasibinomial family taken to be 0.07518569)

##

Null deviance: 91.316 on 999 degrees of freedom

Residual deviance: 78.274 on 995 degrees of freedom

AIC: NA

##

Number of Fisher Scoring iterations: 3

Calculate the MSE for model 2:

pred2 <- 1 / (1+ exp(-(coef(regr2)[1] +

+ t$is_LF * coef(regr2)[2]

+ t$is_HF * coef(regr2)[3]

+ t$is_LM * coef(regr2)[4]

+ t$is_HM * coef(regr2)[5]

)))

SE2 <- (pred2 - t$is_good)^2

MSE2 <- sum(SE2) / length(SE2)

© Dr. Philippe J.S. De Brouwer 137/156

Compare the Performance of Model 1 and Model 2

Finally, we also note that the MSE has improved too:

MSE1

[1] 0.02166756

MSE2

[1] 0.01844601

© Dr. Philippe J.S. De Brouwer 138/156

Questions

Question #1 Binary dependent variables

In many cases, the dependent variable will be binary (0 or 1, “yes” or “no”). That means that we are trying
to model a yes/no decision. For example, 1 can be a customer that defaulted on a loan, a customer to
receive a special offer, etc.

t <- mutate(t, "is_good" = if_else(is_good >= 0.5, 1L, 0L))

Remakemodel 1 (logistic regression in function of age and sexM) andmodel 2 (logistic regression for the
variables is_LF, is_HF, is_LM, and is_HM). What does this change? Are the conclusions different?

Question #2 Think outside the box

In this particular case, what other approach would you suggest?

© Dr. Philippe J.S. De Brouwer 139/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 19: Data Binning

↓

section 4:

Weight of Evidence and Information Value

© Dr. Philippe J.S. De Brouwer 140/156

Weight of Evidence (WOE)

For each bin i of variable j (or for each binary variable j) is defined as

WOEij = log

#Gij
#G
#Bij
#B

Where #Gij is the number of “good observations” (binary variable is 1) in bin i for variable j. #Gis the number of
good observations for the whole dataset, and “B” refers to the “bad observations” (i.e. where the dependent
variable is 0).

This makes WOE a measure of predicting power of a binned variable.

© Dr. Philippe J.S. De Brouwer 141/156

Information Value (IV)

The information value of bin i for variable j is defined as

IVij =

(
#Gij

#G
−

#Bij

#B

)
.WOEij

Rule of thumb:

IV Predictability
< 0.02 Not predictive

0.02− 0.3 Weak
0.1− 0.3 Medium
0.3− 0.5 Strong
> 0.5 Suspicious

Table 1: Different levels of information value and their commonly accepted interpretation – which works good in the environment
of credit data for example.

© Dr. Philippe J.S. De Brouwer 142/156

WOE and IV in R i

We start from this dataset used in previous section:

print(t)

A tibble: 1,000 x 8

age sex is_good sexM is_LF is_HF is_LM is_HM

<dbl> <chr> <int> <dbl> <int> <int> <int> <int>

1 44.3 F 1 1 0 0 0 0

2 38.3 F 1 1 0 0 0 0

3 38.9 F 1 1 0 0 0 0

4 58.5 F 0 1 0 1 0 0

5 31.5 F 1 1 1 0 0 0

6 48.4 F 0 1 0 0 0 0

7 28.9 F 1 1 1 0 0 0

8 29.9 F 0 1 1 0 0 0

9 30.1 F 1 1 1 0 0 0

10 51.1 F 0 1 0 1 0 0

... with 990 more rows

This dataset contains a specific property where males and females have a similar propensity to spend as an
average population. However, this propensity is decreasing for females and increasing for males. This situation
is particularly difficult, since at first glance the variables Age and Sex will not be predictive at all. We need to look
at the interactions between the variables in order to find the underlying relations.

© Dr. Philippe J.S. De Brouwer 143/156

WOE and IV in R ii

Now, that we have data, we can load the package InformationValue, create a weight of evidence table and
calculate the information value for a given variable:

#install.packages("InformationValue")

library(InformationValue)

WOETable(X = factor(t$sexM), Y = t$is_good, valueOfGood=1) %>%

knitr::kable(format.args = list(big.mark = " ", digits=2))

CAT GOODS BADS TOTAL PCT_G PCT_B WOE IV
1 267 233 500 0.52 0.48 0.088 0.0039
2 245 255 500 0.48 0.52 -0.088 0.0039

also functions WOE() and IV(), e.g.

IV of a categorical variable is the sum of IV of its categories

IV(X = factor(t$sexM), Y = t$is_good, valueOfGood=1)

[1] 0.007757952

attr(,"howgood")

[1] "Not Predictive"

© Dr. Philippe J.S. De Brouwer 144/156

Using Matrix Variables and the Function IV()

Dividing the data based on gender is not sufficient, and it does not work. Using our variables, such as is_LF
(female from the lower age group), which combine the information of age and gender should work better.

WOETable(X = factor(t$is_LF), Y = t$is_good, valueOfGood=1) %>%

knitr::kable(digits=2)

CAT GOODS BADS TOTAL PCT_G PCT_B WOE IV
0 396 450 846 0.77 0.92 -0.18 0.03
1 116 38 154 0.23 0.08 1.07 0.16

The package porvides also functions WOE() and IV().

The IV of a categorical variable is the sum of IV of its categories.

IV(X = factor(t$is_LF), Y = t$is_good, valueOfGood=1)

[1] 0.1849507

attr(,"howgood")

[1] "Highly Predictive"

© Dr. Philippe J.S. De Brouwer 145/156

Question

Question #3

Consider the dataset mtcars and investigate if the gearbox type (the variable am is a good predictor for
the layout of the motor (the variable vs, V-motor or not). Do this by using WOE and IV.

© Dr. Philippe J.S. De Brouwer 146/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling
↓

chapter 20:

Factoring Analysis and Principle Components

© Dr. Philippe J.S. De Brouwer 147/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 20: Factoring Analysis and Principle Components

↓

section 1:

Principle Components Analysis (PCA)

© Dr. Philippe J.S. De Brouwer 148/156

PCA in R and Visualising Results i

fit <- princomp(mtcars, cor=TRUE)

summary(fit) # print the variance explained by PC

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4

Standard deviation 2.5706809 1.6280258 0.79195787 0.51922773

Proportion of Variance 0.6007637 0.2409516 0.05701793 0.02450886

Cumulative Proportion 0.6007637 0.8417153 0.89873322 0.92324208

Comp.5 Comp.6 Comp.7 Comp.8

Standard deviation 0.47270615 0.45999578 0.36777981 0.35057301

Proportion of Variance 0.02031374 0.01923601 0.01229654 0.01117286

Cumulative Proportion 0.94355581 0.96279183 0.97508837 0.98626123

Comp.9 Comp.10 Comp.11

Standard deviation 0.277572792 0.228112781 0.148473587

Proportion of Variance 0.007004241 0.004730495 0.002004037

Cumulative Proportion 0.993265468 0.997995963 1.000000000

© Dr. Philippe J.S. De Brouwer 149/156

PCA in R and Visualising Results ii

loadings(fit) # show PC loadings

##

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

mpg 0.363 0.226 0.103 0.109 0.368 0.754 0.236

cyl -0.374 0.175 -0.169 0.231

disp -0.368 -0.257 0.394 0.336 0.214 0.198

hp -0.330 0.249 -0.140 0.540 0.222 -0.576

drat 0.294 0.275 -0.161 -0.855 -0.244

wt -0.346 -0.143 -0.342 -0.246 0.465 0.359

qsec 0.200 -0.463 -0.403 -0.165 0.330 0.232 -0.528

vs 0.307 -0.232 -0.429 0.215 0.600 -0.194 -0.266 0.359

am 0.235 0.429 0.206 0.571 -0.587

gear 0.207 0.462 -0.290 0.265 0.244 0.605 -0.336

carb -0.214 0.414 -0.529 0.127 -0.361 -0.184 -0.175 0.396 0.171

Comp.10 Comp.11

mpg 0.139 0.125

cyl -0.846 0.141

disp -0.661

hp 0.248 0.256

drat -0.101

wt 0.567

qsec -0.271 -0.181

vs -0.159

am -0.178

gear -0.214

carb -0.320

##

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7

SS loadings 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Proportion Var 0.091 0.091 0.091 0.091 0.091 0.091 0.091

Cumulative Var 0.091 0.182 0.273 0.364 0.455 0.545 0.636

Comp.8 Comp.9 Comp.10 Comp.11

SS loadings 1.000 1.000 1.000 1.000

Proportion Var 0.091 0.091 0.091 0.091

Cumulative Var 0.727 0.818 0.909 1.000

head(fit$scores) # the first principal components

Comp.1 Comp.2 Comp.3 Comp.4

Mazda RX4 0.65721320 1.7354457 0.6011992 -0.11552157

Mazda RX4 Wag 0.62939551 1.5500334 0.3823225 -0.20230735

Datsun 710 2.77939704 -0.1464566 0.2412383 0.24913915

Hornet 4 Drive 0.31177071 -2.3630190 0.1357593 0.51186167

Hornet Sportabout -1.97448894 -0.7544022 1.1344023 -0.07565343

Valiant 0.05613753 -2.7859996 -0.1638257 0.99077109

Comp.5 Comp.6 Comp.7 Comp.8

Mazda RX4 -0.9606527 0.01725919 -0.43331073 0.009785327

Mazda RX4 Wag -1.0329487 0.24559248 -0.42286009 0.085872622

Datsun 710 0.4051429 0.35434845 -0.61858354 -0.594620452

Hornet 4 Drive 0.5579968 -0.01960577 -0.04100656 0.050376408

Hornet Sportabout 0.2108362 -0.15158000 0.38964468 0.162862684

Valiant 0.2150522 0.24773748 -0.29935617 -0.260718480

Comp.9 Comp.10 Comp.11

Mazda RX4 0.14876595 -0.06777082 -0.18256885

Mazda RX4 Wag 0.07572081 -0.12895863 -0.09006266

Datsun 710 -0.13332838 0.04646973 0.09614714

Hornet 4 Drive 0.22374183 -0.06136627 -0.14997320

Hornet Sportabout -0.02151508 -0.06078737 -0.14874956

Valiant -0.03274477 -0.20488134 -0.01985780

plot the loadings (output see figure):

plot(fit,type="b", col='khaki3')

Comp.1 Comp.3 Comp.5 Comp.7 Comp.9

fit

Va
ria

nc
es

0
1

2
3

4
5

6

Figure 11: A visualization of the loadings of the principal components of the dataset mtcars.

show the biplot:

biplot(fit)

−0.2 0.0 0.2 0.4

−0
.2

0.0
0.2

0.4

Comp.1

Co
mp

.2

Mazda RX4
Mazda RX4 Wag

Datsun 710

Hornet 4 Drive

Hornet Sportabout

Valiant

Duster 360

Merc 240D

Merc 230

Merc 280
Merc 280C

Merc 450SEMerc 450SLMerc 450SLCCadillac FleetwoodLincoln Continental
Chrysler Imperial Fiat 128

Honda Civic

Toyota Corolla

Toyota Corona

Dodge ChallengerAMC Javelin

Camaro Z28

Pontiac Firebird

Fiat X1−9

Porsche 914−2

Lotus Europa

Ford Pantera L
Ferrari Dino

Maserati Bora

Volvo 142E

−4 −2 0 2 4 6 8

−4
−2

0
2

4
6

8

mpgcyl

disp

hp drat

wt

qsec

vs

am
gear

carb

Figure 12: The biplot of the dataset mtcars: all observation and dimensions projected in the plane span by the first two principal
components.

© Dr. Philippe J.S. De Brouwer 150/156

PCA before the model

Hint – Executing PCA before fitting a model

Since a lot of variance is explained in the first PCs, it is a good idea to fit any model (such as a logistic
regression or any other model) not directly on mtcars, but rather on its principal components.
This will make the model more stable and one can expect the model to perform better out of sample, the
only cost is the loss of transparency of the model.a

a If the first principal components can be summarizes as a certain concept, then there is little to no loss of transparency. However, usually,
the PCs are composed of too many variables and do not summarize as one concept.

© Dr. Philippe J.S. De Brouwer 151/156

The Big R-Book by Philippe J.S. De Brouwer

part 04: Data Wrangling

↓

chapter 20: Factoring Analysis and Principle Components

↓

section 2:

Factor Analysis

© Dr. Philippe J.S. De Brouwer 152/156

Factor Analysis in R i

© Dr. Philippe J.S. De Brouwer 153/156

Factor Analysis in R ii

Maximum Likelihood Factor Analysis

Extracting 3 factors with varimax rotation:

fit <- factanal(mtcars, 3, rotation = "varimax")

print(fit, digits = 2, cutoff = .3, sort = TRUE)

##

Call:

factanal(x = mtcars, factors = 3, rotation = "varimax")

##

Uniquenesses:

mpg cyl disp hp drat wt qsec vs am gear carb

0.13 0.06 0.09 0.13 0.29 0.06 0.05 0.22 0.21 0.12 0.16

##

Loadings:

Factor1 Factor2 Factor3

mpg 0.64 -0.48 -0.47

disp -0.72 0.54 0.32

drat 0.80

wt -0.78 0.52

am 0.88

gear 0.91

cyl -0.62 0.70

hp 0.72 0.51

qsec -0.95

vs -0.80

carb 0.56 0.72

##

Factor1 Factor2 Factor3

SS loadings 4.38 3.52 1.58

Proportion Var 0.40 0.32 0.14

Cumulative Var 0.40 0.72 0.86

##

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 30.53 on 25 degrees of freedom.

The p-value is 0.205

plot factor 1 by factor 2

load <- fit$loadings[,1:2]

plot(load, type = "n") # plot the loads

text(load, labels = colnames(mtcars),

cex = 1.75, col = 'blue') # add variable names

−0.5 0.0 0.5

−1
.0

−0
.5

0.0
0.5

Factor1

Fa
cto

r2

mpg

cyl

disp

hp

drat

wt

qsec
vs

amgear

carb

Figure 13: When plot() function is called with a factanal-object, it will plot a projection of the dimensions in the 2D plane span
by the two dominant factors.

© Dr. Philippe J.S. De Brouwer 154/156

Factor Analysis: Deciding How Many Factors to Use i

load the library nFactors:

library(nFactors)

Then we can perform the analysis, get the optimal number of factors, and plot a visualisation:

Get the eigenvectors:

eigV <- eigen(cor(mtcars))

Get mean and selected quantile of the distribution of eigen-

values of correlation or a covariance matrices of standardized

normally distributed variables:

aPar <- parallel(subject = nrow(mtcars),var = ncol(mtcars),

rep = 100, cent = 0.05)

Get the optimal number of factors analysis:

nScr <- nScree(x = eigV$values, aparallel = aPar$eigen$qevpea)

See the result

nScr

noc naf nparallel nkaiser

1 2 1 2 2

and plot it.

plotnScree(nScr)

© Dr. Philippe J.S. De Brouwer 155/156

Factor Analysis: Deciding How Many Factors to Use ii

●

●

●

● ● ●
● ● ● ● ●

2 4 6 8 10

0
1

2
3

4
5

6

Non Graphical Solutions to Scree Test

Components

Eig
en

va
lue

s

● Eigenvalues (>mean = 2)
Parallel Analysis (n = 2)
Optimal Coordinates (n = 2)
Acceleration Factor (n = 1)

 (OC) (AF)

Figure 14: Visual aids to select the optimal number of factors.

© Dr. Philippe J.S. De Brouwer 156/156

	Importing the Data
	Importing from an SQL RDBMS
	Importing Flat Files in the Tidyverse

	Tidy Data
	Tidying Up Data with tidyr
	Splitting Tables
	Convert Headers to Data
	Spreading One Column Over Many
	Split One Columns into Many
	Merge Multiple Columns Into One
	Wrong Data

	SQL-like Functionality via dplyr
	Selecting Columns
	Filtering Rows
	Joining
	Mutating Data
	Set Operations

	String Manipulation in the tidyverse
	Basic String Manipulation
	Pattern Matching with Regular Expressions

	Dates with lubridate
	ISO 8601 Format
	Time-zones
	Extract Date and Time Components
	Calculating with Date-times

	Factors with forcats
	Reasons for Data to be Missing
	Methods to Handle Missing Data
	Alternative Solutions to Missing Data
	Predictive Mean Matching (PMM)

	R Packages to Deal with Missing Data
	mice
	missForest
	Hmisc

	What is Binning and Why Use It
	Tuning the Binning Procedure
	More Complex Cases: Matrix Binning
	Weight of Evidence and Information Value
	Weight of Evidence (WOE)
	Information Value (IV)
	WOE and IV in R

	Principle Components Analysis (PCA)
	Factor Analysis

