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ABSTRACT. The study of the different patterns which appear beyond the electro-
hydrodynamic instability of nematic liquid crystals is performed in the framework
of a dynamical model of the Proctor-Sivashinsky type. This model describes the
experimentally observed transitions between rolls, zig-zag and bimodal structures.

1. Introduction

In the recent years, there has been much interest for pattern forming instabilities
in nematic liquid crystals, both experimentally [1-2] and theoretically [3-6]. It
is now well known that a thin layer of nematic liquid crystal, submitted to an
oscillating electrical field of increasing amplitude, presents a sequence of transitions
between different types of structures ending in complex spatio-temporal regimes
[1-5]. Usually, the following structures are successively observed : straight rolls,
undulated rolls, oblique or zig-zag rolls, bimodal structures and finally states of
high spatio-temporal complexity.

The theoretical description of these structures and of the electrohydrodynamic
convection in general is extremely difficult, due to the complexity of the underlying
nemato-electrohydrodynamics, and the time dependence of the external forcing.
[t has however been possible to perform the linear stability analysis of the ho-
mogeneous steady state and to compute the threshold for pattern formation, the
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neutral surface and the linear growth rate of the unstable modes [5], but a sys-
tematic derivation of the nonlinear terms of the correponding amplitude equations
from the underlying dynamics is not available yet. Amplitude equations, based
on symmetry arguments, have nevertheless been derived for each type of structure
and they satisfactorily describe various aspects of electrically driven liquid crys-
tals. Despite their interest, these equations are not able to decribe the transitions
between the different structures, nor their relative stability. Hence it would be
interesting to rely on a reduced dynamical model which encompasses the various
instability thresholds and plays here the role of the Swift-Hohenberg equation for
Rayleigh-Bénard convection [7].

It is why we propose to describe the behavior of nematic liquid crystals near
the electrohydrodynamic instability with a reduced dynamical model for an order
parameterlike variable which takes into account a minimal set of basic elements,
namely the intrinsic anisotropy of the system, which is known to affect the se-
lection and stability of spatial patterns [8], and the gradient dependence of the
nonlinear couplings. This model reproduces the sequence of observed patterns but
also suggests that bimodal structures should be stable in a closed domain of the
parameter space. The fact that the boundary of this domain corresponds to a
phase instability is consistent with the observed defect mediated disordered states
that appear for increasing field intensities.

2. The model

Following the linear stability analysis and the near threshold description performed
by Bodenschatz et al. for electrohydrodynamic convection in nematics [5], the
linear growth rate of the order parameterlike variable may be written, near the
instability threshold, as
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or
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in Fourier space. ¢ is the reduced distance to threshold (V? — V?)/V? where V
is the amplitude of the applied voltage and V. its threshold value. s, 5 and
are positive materials parameters reflecting the anisotropy of the system, and the
critical wavenumber has been scaled to one. The x axis being the easy axis, s is
larger than one, and, in the following, we will consider s = 2, n = 0.25 and r = 1.5,
values that are consistent with the analysis of Bodenschatz et al. [5]

The corresponding marginal stability surface is thus given by (fig.1)
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Figure 1 : Contour plot of the marginal stability surface and
marginal stability curve for different wavevector orientations in
the case of the linear growth rate given in (1).



























